Cargando…

Inhibition and relaxation of sea urchin sperm flagella by vanadate

Direct measurements of the stiffness (elastic bending resistance) of demembranated sera urchin sperm flagella were made in the presence of MgATP2- and vanadate. Under these conditions, the flagellum is in a relaxed state, with a stiffness of approximately 0.9 x 10(-21) N m2, which is approximately 5...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111438/
https://www.ncbi.nlm.nih.gov/pubmed/6446567
_version_ 1782139731769819136
collection PubMed
description Direct measurements of the stiffness (elastic bending resistance) of demembranated sera urchin sperm flagella were made in the presence of MgATP2- and vanadate. Under these conditions, the flagellum is in a relaxed state, with a stiffness of approximately 0.9 x 10(-21) N m2, which is approximately 5% of the stiffness obtained in the rigor state in the absence of MgATP2-. MgADP- dose not substitute for MgATP2- in producing relaxed state. A progressive inhibition of movement is observed after addition of MgATP2- to flagella preincubated with vanadate, in which new bend generation, propagation, and relaxation by straightening are distinguished, depending on the ratio of MgATP2- and vanadate. At appropriate concentrations of vanadate, increase of the velocity of bend propagation is observed at a very low concentration of MgATP2- that is not enough to induce spontaneous beating. Vanadate enhances competitive inhibition of beat frequency by MgADP- but not by ADP3-, ATP4-, or Pi. These observations, and the uncompetitive inhibition of beat frequency by vanadate, indicate that vanadate can only bind to dynein-nucleotide complexes induced by MgATP2- and MgADP-. The state accessible by MgATP2- binding must be a state in which the cross-bridges are detached and the flagellum is relaxed. The state accessible by MgADP- binding must be a cross-bridged state. Bound vanadate prevents the transition between these two states. Inhibition and relaxation by banadate in the presence of MgATP2- results from the specific affinity of vanadate for a state in which nucleotide is bound, rather than a specific affinity for the deteched state.
format Text
id pubmed-2111438
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21114382008-05-01 Inhibition and relaxation of sea urchin sperm flagella by vanadate J Cell Biol Articles Direct measurements of the stiffness (elastic bending resistance) of demembranated sera urchin sperm flagella were made in the presence of MgATP2- and vanadate. Under these conditions, the flagellum is in a relaxed state, with a stiffness of approximately 0.9 x 10(-21) N m2, which is approximately 5% of the stiffness obtained in the rigor state in the absence of MgATP2-. MgADP- dose not substitute for MgATP2- in producing relaxed state. A progressive inhibition of movement is observed after addition of MgATP2- to flagella preincubated with vanadate, in which new bend generation, propagation, and relaxation by straightening are distinguished, depending on the ratio of MgATP2- and vanadate. At appropriate concentrations of vanadate, increase of the velocity of bend propagation is observed at a very low concentration of MgATP2- that is not enough to induce spontaneous beating. Vanadate enhances competitive inhibition of beat frequency by MgADP- but not by ADP3-, ATP4-, or Pi. These observations, and the uncompetitive inhibition of beat frequency by vanadate, indicate that vanadate can only bind to dynein-nucleotide complexes induced by MgATP2- and MgADP-. The state accessible by MgATP2- binding must be a state in which the cross-bridges are detached and the flagellum is relaxed. The state accessible by MgADP- binding must be a cross-bridged state. Bound vanadate prevents the transition between these two states. Inhibition and relaxation by banadate in the presence of MgATP2- results from the specific affinity of vanadate for a state in which nucleotide is bound, rather than a specific affinity for the deteched state. The Rockefeller University Press 1980-06-01 /pmc/articles/PMC2111438/ /pubmed/6446567 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Inhibition and relaxation of sea urchin sperm flagella by vanadate
title Inhibition and relaxation of sea urchin sperm flagella by vanadate
title_full Inhibition and relaxation of sea urchin sperm flagella by vanadate
title_fullStr Inhibition and relaxation of sea urchin sperm flagella by vanadate
title_full_unstemmed Inhibition and relaxation of sea urchin sperm flagella by vanadate
title_short Inhibition and relaxation of sea urchin sperm flagella by vanadate
title_sort inhibition and relaxation of sea urchin sperm flagella by vanadate
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111438/
https://www.ncbi.nlm.nih.gov/pubmed/6446567