Cargando…

Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations

NADH-cytochrome b5 reductases of rat liver microsomes, mitochondria, and heavy and light Golgi fractions (GF3 and GF 1+2) were compared by antibody inhibition and competition experiments, by peptide mapping, and by CNBr fragment analysis. The water-soluble portion of the microsomal enzyme, released...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111440/
https://www.ncbi.nlm.nih.gov/pubmed/7391132
_version_ 1782139732249018368
collection PubMed
description NADH-cytochrome b5 reductases of rat liver microsomes, mitochondria, and heavy and light Golgi fractions (GF3 and GF 1+2) were compared by antibody inhibition and competition experiments, by peptide mapping, and by CNBr fragment analysis. The water-soluble portion of the microsomal enzyme, released by lysosomal digestion and purified by a published procedure, was used to raise antibodies in rabbits. Contaminant antimicrosome antibodies were removed from immune sera by immunoadsorption onto the purified antigen, and the F(ab')2 fragments of the pure antireductase antibody thus obtained were found to inhibit the NADH-cytochrome c reductase activity equally well in the four membrane fractions investigated, with similar dose-response relationships. Moreover, the purified water-soluble fragment of microsomal reductase, which by itself is very inefficient in reducing cytochrome c, competed for antibody binding with the membrane-bound enzymes, and therefore prevented the inhibition of their activity not only in microsomes but also in the other fractions. The reductases isolated from detergent-solubilized microsomes, mitochondria, GF3, and GF1+2 by immunoadsorption had identical mobilities in SDS polyacrylamide gels. The corresponding bands were eluted from gels, fragmented with pepsin or CNBr treatment, and the two families of peptides thus obtained were analyzed by two-dimensional mapping and SDS polyacrylamide gel electrophoresis, respectively. Both analyses failed to reveal differences among reductases of the four fractions. These findings support the hypothesis that NADH-cytochrome b5 reductase in its various subcellular locations is molecularly identical.
format Text
id pubmed-2111440
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21114402008-05-01 Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations J Cell Biol Articles NADH-cytochrome b5 reductases of rat liver microsomes, mitochondria, and heavy and light Golgi fractions (GF3 and GF 1+2) were compared by antibody inhibition and competition experiments, by peptide mapping, and by CNBr fragment analysis. The water-soluble portion of the microsomal enzyme, released by lysosomal digestion and purified by a published procedure, was used to raise antibodies in rabbits. Contaminant antimicrosome antibodies were removed from immune sera by immunoadsorption onto the purified antigen, and the F(ab')2 fragments of the pure antireductase antibody thus obtained were found to inhibit the NADH-cytochrome c reductase activity equally well in the four membrane fractions investigated, with similar dose-response relationships. Moreover, the purified water-soluble fragment of microsomal reductase, which by itself is very inefficient in reducing cytochrome c, competed for antibody binding with the membrane-bound enzymes, and therefore prevented the inhibition of their activity not only in microsomes but also in the other fractions. The reductases isolated from detergent-solubilized microsomes, mitochondria, GF3, and GF1+2 by immunoadsorption had identical mobilities in SDS polyacrylamide gels. The corresponding bands were eluted from gels, fragmented with pepsin or CNBr treatment, and the two families of peptides thus obtained were analyzed by two-dimensional mapping and SDS polyacrylamide gel electrophoresis, respectively. Both analyses failed to reveal differences among reductases of the four fractions. These findings support the hypothesis that NADH-cytochrome b5 reductase in its various subcellular locations is molecularly identical. The Rockefeller University Press 1980-06-01 /pmc/articles/PMC2111440/ /pubmed/7391132 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations
title Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations
title_full Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations
title_fullStr Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations
title_full_unstemmed Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations
title_short Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations
title_sort localization and biosynthesis of nadh-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. ii. evidence that a single enzyme accounts for the activity in its various subcellular locations
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111440/
https://www.ncbi.nlm.nih.gov/pubmed/7391132