Cargando…

In vitro fusion of Acanthamoeba phagolysosomes. III. Evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in Acanthamoeba homogenates

Fusion of phagolysosomes has been previously demonstrated to occur during the incubation of phagolysosome-containing homogenates of Acanthamoeba (Oates and Touster, 1978, J. Cell Biol. 79:217-234). Further studies on this system have shown that methylxanthines (0.2 mM) and/or cAMP (0.5-1 mM) markedl...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111447/
https://www.ncbi.nlm.nih.gov/pubmed/6248567
_version_ 1782139733898428416
collection PubMed
description Fusion of phagolysosomes has been previously demonstrated to occur during the incubation of phagolysosome-containing homogenates of Acanthamoeba (Oates and Touster, 1978, J. Cell Biol. 79:217-234). Further studies on this system have shown that methylxanthines (0.2 mM) and/or cAMP (0.5-1 mM) markedly accelerate the average rate, but not the extent, of the in vitro phagolysosome fusion process. Adenosine, 5'- AMP, and ADP (0.5-1 mM) were without effect. ATP (0.5-1 mM) caused variable stimulation, whereas beta, gamma-methylene-ATP (1 mM) caused pronounced inhibition, as did GTP (1 mM) and cGMP (1 mM). Stimulation by 3-isobutyl-1-methylxanthine was blocked by GTP, but not by ATP or cAMP. These results indicate that the rate of phagolysosome fusion in Acanthamoeba homogenates may be regulated by cyclic nucleotides, with enhancement of the fusion rate by cAMP and inhibition of the rate by cGMP. The extent of the reaction increased spontaneously and markedly during the first few hours after preparation of the homogenates. This activation appears to be because of a slow conversion of a significant fraction of the vacuole population from a fusion-incompetent to a fusion-competent, cyclic nucleotide-sensitive state.
format Text
id pubmed-2111447
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21114472008-05-01 In vitro fusion of Acanthamoeba phagolysosomes. III. Evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in Acanthamoeba homogenates J Cell Biol Articles Fusion of phagolysosomes has been previously demonstrated to occur during the incubation of phagolysosome-containing homogenates of Acanthamoeba (Oates and Touster, 1978, J. Cell Biol. 79:217-234). Further studies on this system have shown that methylxanthines (0.2 mM) and/or cAMP (0.5-1 mM) markedly accelerate the average rate, but not the extent, of the in vitro phagolysosome fusion process. Adenosine, 5'- AMP, and ADP (0.5-1 mM) were without effect. ATP (0.5-1 mM) caused variable stimulation, whereas beta, gamma-methylene-ATP (1 mM) caused pronounced inhibition, as did GTP (1 mM) and cGMP (1 mM). Stimulation by 3-isobutyl-1-methylxanthine was blocked by GTP, but not by ATP or cAMP. These results indicate that the rate of phagolysosome fusion in Acanthamoeba homogenates may be regulated by cyclic nucleotides, with enhancement of the fusion rate by cAMP and inhibition of the rate by cGMP. The extent of the reaction increased spontaneously and markedly during the first few hours after preparation of the homogenates. This activation appears to be because of a slow conversion of a significant fraction of the vacuole population from a fusion-incompetent to a fusion-competent, cyclic nucleotide-sensitive state. The Rockefeller University Press 1980-06-01 /pmc/articles/PMC2111447/ /pubmed/6248567 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
In vitro fusion of Acanthamoeba phagolysosomes. III. Evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in Acanthamoeba homogenates
title In vitro fusion of Acanthamoeba phagolysosomes. III. Evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in Acanthamoeba homogenates
title_full In vitro fusion of Acanthamoeba phagolysosomes. III. Evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in Acanthamoeba homogenates
title_fullStr In vitro fusion of Acanthamoeba phagolysosomes. III. Evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in Acanthamoeba homogenates
title_full_unstemmed In vitro fusion of Acanthamoeba phagolysosomes. III. Evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in Acanthamoeba homogenates
title_short In vitro fusion of Acanthamoeba phagolysosomes. III. Evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in Acanthamoeba homogenates
title_sort in vitro fusion of acanthamoeba phagolysosomes. iii. evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in acanthamoeba homogenates
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111447/
https://www.ncbi.nlm.nih.gov/pubmed/6248567