Cargando…
Arrest of membrane fusion events in mast cells by quick-freezing
We have used quick-freezing and freeze-fracture to study early stages of exocytosis in rat peritoneal mast cells. Mast cells briefly stimulated with 48/80 (a synthetic polycation and well-known histamine- releasing agent) at 22 degrees C displayed single, narrow-necked pores (some as small as 0.05 m...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1980
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111488/ https://www.ncbi.nlm.nih.gov/pubmed/7400221 |
_version_ | 1782139743927009280 |
---|---|
collection | PubMed |
description | We have used quick-freezing and freeze-fracture to study early stages of exocytosis in rat peritoneal mast cells. Mast cells briefly stimulated with 48/80 (a synthetic polycation and well-known histamine- releasing agent) at 22 degrees C displayed single, narrow-necked pores (some as small as 0.05 micrometer in diameter) joining single granules with the plasma membrane. Pores that had become as large as 0.1 micrometer in diameter were clearly etchable and thus represented aqueous channels connecting the granule interior with the extracellular space. Granules exhibiting pores usually did not have wide areas of contact with the plasma membrane, and clearings of intramembrane particles, seen in chemically fixed mast cells undergoing exocytosis, were not present on either plasma or granule membranes. Fusion of interior granules later in the secretory process also appeared to involve pores; granules were often joined by one pore or a group of 2-4 pores. Also found were groups of extremely small, etchable pores on granule membranes that may represent the earliest aqueous communication between fusing granules. |
format | Text |
id | pubmed-2111488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1980 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21114882008-05-01 Arrest of membrane fusion events in mast cells by quick-freezing J Cell Biol Articles We have used quick-freezing and freeze-fracture to study early stages of exocytosis in rat peritoneal mast cells. Mast cells briefly stimulated with 48/80 (a synthetic polycation and well-known histamine- releasing agent) at 22 degrees C displayed single, narrow-necked pores (some as small as 0.05 micrometer in diameter) joining single granules with the plasma membrane. Pores that had become as large as 0.1 micrometer in diameter were clearly etchable and thus represented aqueous channels connecting the granule interior with the extracellular space. Granules exhibiting pores usually did not have wide areas of contact with the plasma membrane, and clearings of intramembrane particles, seen in chemically fixed mast cells undergoing exocytosis, were not present on either plasma or granule membranes. Fusion of interior granules later in the secretory process also appeared to involve pores; granules were often joined by one pore or a group of 2-4 pores. Also found were groups of extremely small, etchable pores on granule membranes that may represent the earliest aqueous communication between fusing granules. The Rockefeller University Press 1980-08-01 /pmc/articles/PMC2111488/ /pubmed/7400221 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Arrest of membrane fusion events in mast cells by quick-freezing |
title | Arrest of membrane fusion events in mast cells by quick-freezing |
title_full | Arrest of membrane fusion events in mast cells by quick-freezing |
title_fullStr | Arrest of membrane fusion events in mast cells by quick-freezing |
title_full_unstemmed | Arrest of membrane fusion events in mast cells by quick-freezing |
title_short | Arrest of membrane fusion events in mast cells by quick-freezing |
title_sort | arrest of membrane fusion events in mast cells by quick-freezing |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111488/ https://www.ncbi.nlm.nih.gov/pubmed/7400221 |