Cargando…
Microtubule assembly and disassembly at alkaline pH
Although it is now apparent that the intracellular pH may rise considerably above neutrality under physiological conditions, information on the effect of alkaline pH on microtubule assembly and disassembly is still quite fragmentay. We have studied the assembly/disassembly of bovine brain microtubul...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1981
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111771/ https://www.ncbi.nlm.nih.gov/pubmed/7228899 |
_version_ | 1782139801721372672 |
---|---|
author | Regula, CS Pfeiffer, Berlin, RD |
author_facet | Regula, CS Pfeiffer, Berlin, RD |
author_sort | Regula, CS |
collection | PubMed |
description | Although it is now apparent that the intracellular pH may rise considerably above neutrality under physiological conditions, information on the effect of alkaline pH on microtubule assembly and disassembly is still quite fragmentay. We have studied the assembly/disassembly of bovine brain microtubule protein at alkaline pH in vitro. When microtubules are assembled to a new steady state at pH less than 7 and pH is then made more alkaline, they undergo a rapid disassembly to a new steady state. This disassembly is reversed by acidification. The degree of disassembly is determined largely by the pH- dependence of the critical concentration, which increases five to eight times, from pH 7 to 8. A fraction of assembly-incompetent tubulin is identified that increases with pH, but its incompetency is largely reversed with acidification. Measurements of microtubule lengths are used to indicate that disassembly occurs by uniform shortening of microtubules. A comparison of shortening by alkalinization with dilution suggests that the intrinsic rate of disassembly is accelerated by increasing pH. The capacity for initiating assembly is progressively lost with incubation at alkaline pH (although some protection is afforded by sulfhydryl-reducing agents). However, direct assembly from depolymerized mixtures is possible at least up to pH 8.3, and the steady state achieved at these alkaline pH values is stable. Such preparations are readily disassembled by cold and podophyllotoxin (PLN). Disassembly induced by PLN is also markedly enhanced at alkaline pH, suggesting a corresponding enhancement of “treadmilling.” The implications of physiological events leading to alkaline shifts of pH for microtubule assembly/disassembly are discussed, particularly in the light of recent hypotheses regarding treadmilling and its role in controlling the distribution of microtubules in vivo. |
format | Text |
id | pubmed-2111771 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1981 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21117712008-05-01 Microtubule assembly and disassembly at alkaline pH Regula, CS Pfeiffer, Berlin, RD J Cell Biol Articles Although it is now apparent that the intracellular pH may rise considerably above neutrality under physiological conditions, information on the effect of alkaline pH on microtubule assembly and disassembly is still quite fragmentay. We have studied the assembly/disassembly of bovine brain microtubule protein at alkaline pH in vitro. When microtubules are assembled to a new steady state at pH less than 7 and pH is then made more alkaline, they undergo a rapid disassembly to a new steady state. This disassembly is reversed by acidification. The degree of disassembly is determined largely by the pH- dependence of the critical concentration, which increases five to eight times, from pH 7 to 8. A fraction of assembly-incompetent tubulin is identified that increases with pH, but its incompetency is largely reversed with acidification. Measurements of microtubule lengths are used to indicate that disassembly occurs by uniform shortening of microtubules. A comparison of shortening by alkalinization with dilution suggests that the intrinsic rate of disassembly is accelerated by increasing pH. The capacity for initiating assembly is progressively lost with incubation at alkaline pH (although some protection is afforded by sulfhydryl-reducing agents). However, direct assembly from depolymerized mixtures is possible at least up to pH 8.3, and the steady state achieved at these alkaline pH values is stable. Such preparations are readily disassembled by cold and podophyllotoxin (PLN). Disassembly induced by PLN is also markedly enhanced at alkaline pH, suggesting a corresponding enhancement of “treadmilling.” The implications of physiological events leading to alkaline shifts of pH for microtubule assembly/disassembly are discussed, particularly in the light of recent hypotheses regarding treadmilling and its role in controlling the distribution of microtubules in vivo. The Rockefeller University Press 1981-04-01 /pmc/articles/PMC2111771/ /pubmed/7228899 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Regula, CS Pfeiffer, Berlin, RD Microtubule assembly and disassembly at alkaline pH |
title | Microtubule assembly and disassembly at alkaline pH |
title_full | Microtubule assembly and disassembly at alkaline pH |
title_fullStr | Microtubule assembly and disassembly at alkaline pH |
title_full_unstemmed | Microtubule assembly and disassembly at alkaline pH |
title_short | Microtubule assembly and disassembly at alkaline pH |
title_sort | microtubule assembly and disassembly at alkaline ph |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111771/ https://www.ncbi.nlm.nih.gov/pubmed/7228899 |
work_keys_str_mv | AT regulacs microtubuleassemblyanddisassemblyatalkalineph AT pfeiffer microtubuleassemblyanddisassemblyatalkalineph AT berlinrd microtubuleassemblyanddisassemblyatalkalineph |