Cargando…

Ciliary reversal without rotation of axonemal structures in ctenophore comb plates

We have used a newly discovered reversal response of ctenophore comb plates to investigate the structural mechanisms controlling the direction of ciliary bending. High K+ concentrations cause cydippid larvae of the ctenophore Pleurobrachia to swim backward. High-speed cine films of backward-swimming...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1981
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111786/
https://www.ncbi.nlm.nih.gov/pubmed/6114102
_version_ 1782139805255073792
collection PubMed
description We have used a newly discovered reversal response of ctenophore comb plates to investigate the structural mechanisms controlling the direction of ciliary bending. High K+ concentrations cause cydippid larvae of the ctenophore Pleurobrachia to swim backward. High-speed cine films of backward-swimming animals show a 180 degree reversal in beat direction of the comb plates. Ion substitution and blocking experiments with artificial seawaters demonstrate that ciliary reversal is a Ca++-dependent response. Comb plate cilia possess unique morphological markers for numbering specific outer-doublet microtubules and identifying the sidedness of the central pair. Comb plates of forward- and backward-swimming ctenophores were frozen in different stages of the beat cycle by an "instantaneous fixation" method. Analysis of transverse and longitudinal sections of instantaneously fixed cilia showed that the assembly of outer doublets does not twist during ciliary reversal. This directly confirms the existence of radial switching mechanism regulating the sequence of active sliding on opposite sides of the axoneme. We also found that the axis of the central pair always remains perpendicular to the plane of bending; more importantly, the ultrastructural marker showed that the central pair does not rotate during a 180 degree reversal in beat direction. Thus, the orientation of the central pair does not control the direction of ciliary bending (i.e., the pattern of active sliding around the axoneme). We discuss the validity of this finding for three-dimensional as well as two-dimensional ciliary beat cycles and conclude that models of central-pair function based on correlative data alone must now be re- examined in light of these new findings on causal relations.
format Text
id pubmed-2111786
institution National Center for Biotechnology Information
language English
publishDate 1981
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21117862008-05-01 Ciliary reversal without rotation of axonemal structures in ctenophore comb plates J Cell Biol Articles We have used a newly discovered reversal response of ctenophore comb plates to investigate the structural mechanisms controlling the direction of ciliary bending. High K+ concentrations cause cydippid larvae of the ctenophore Pleurobrachia to swim backward. High-speed cine films of backward-swimming animals show a 180 degree reversal in beat direction of the comb plates. Ion substitution and blocking experiments with artificial seawaters demonstrate that ciliary reversal is a Ca++-dependent response. Comb plate cilia possess unique morphological markers for numbering specific outer-doublet microtubules and identifying the sidedness of the central pair. Comb plates of forward- and backward-swimming ctenophores were frozen in different stages of the beat cycle by an "instantaneous fixation" method. Analysis of transverse and longitudinal sections of instantaneously fixed cilia showed that the assembly of outer doublets does not twist during ciliary reversal. This directly confirms the existence of radial switching mechanism regulating the sequence of active sliding on opposite sides of the axoneme. We also found that the axis of the central pair always remains perpendicular to the plane of bending; more importantly, the ultrastructural marker showed that the central pair does not rotate during a 180 degree reversal in beat direction. Thus, the orientation of the central pair does not control the direction of ciliary bending (i.e., the pattern of active sliding around the axoneme). We discuss the validity of this finding for three-dimensional as well as two-dimensional ciliary beat cycles and conclude that models of central-pair function based on correlative data alone must now be re- examined in light of these new findings on causal relations. The Rockefeller University Press 1981-06-01 /pmc/articles/PMC2111786/ /pubmed/6114102 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Ciliary reversal without rotation of axonemal structures in ctenophore comb plates
title Ciliary reversal without rotation of axonemal structures in ctenophore comb plates
title_full Ciliary reversal without rotation of axonemal structures in ctenophore comb plates
title_fullStr Ciliary reversal without rotation of axonemal structures in ctenophore comb plates
title_full_unstemmed Ciliary reversal without rotation of axonemal structures in ctenophore comb plates
title_short Ciliary reversal without rotation of axonemal structures in ctenophore comb plates
title_sort ciliary reversal without rotation of axonemal structures in ctenophore comb plates
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111786/
https://www.ncbi.nlm.nih.gov/pubmed/6114102