Cargando…

Development of muscle fiber specialization in the rat hindlimb

The appearance of fast and slow fiber types in the distal hindlimb of the rat was investigated using affinity-purified antibodies specific to adult fast and slow myosins, two-dimensional electrophoresis of myosin light chains, and electron microscope examination of developing muscle cells. As others...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1981
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111831/
https://www.ncbi.nlm.nih.gov/pubmed/7251670
_version_ 1782139815817379840
collection PubMed
description The appearance of fast and slow fiber types in the distal hindlimb of the rat was investigated using affinity-purified antibodies specific to adult fast and slow myosins, two-dimensional electrophoresis of myosin light chains, and electron microscope examination of developing muscle cells. As others have noted, muscle histogenesis is not synchronous; rather, a series of muscle fiber generations occurs, each generation forming along the walls of the previous generation. At the onset of myotube formation on the 15th d of gestation, the antimyosin antibodies do not distinguish among fibers. All fibers react strongly with antibody to fast myosin but not with antibody to slow myosin. The initiation of fiber type differentiation can be detected in the 17-d fetus by a gradual increase in the binding of antibody to slow myosin in the primary, but not the secondary, generation myotubes. Moreover, neuromuscular contacts at this crucial time are infrequent, primitive, and restricted predominantly, but not exclusively, to the primary generation cells, the same cells which begin to bind large amounts of antislow myosin at this time. With maturation, the primary generation cells decrease their binding of antifast myosin and become type I fibers. Secondary generation cells are initially all primitive type II fibers. In future fast muscles the secondary generation cells remain type II, while in future slow muscles most of the secondary generation cells eventually change to type I over a prolonged postnatal period. We conclude that the temporal sequence of muscle development is fundamentally important in determining the genetic expression of individual muscle cells.
format Text
id pubmed-2111831
institution National Center for Biotechnology Information
language English
publishDate 1981
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21118312008-05-01 Development of muscle fiber specialization in the rat hindlimb J Cell Biol Articles The appearance of fast and slow fiber types in the distal hindlimb of the rat was investigated using affinity-purified antibodies specific to adult fast and slow myosins, two-dimensional electrophoresis of myosin light chains, and electron microscope examination of developing muscle cells. As others have noted, muscle histogenesis is not synchronous; rather, a series of muscle fiber generations occurs, each generation forming along the walls of the previous generation. At the onset of myotube formation on the 15th d of gestation, the antimyosin antibodies do not distinguish among fibers. All fibers react strongly with antibody to fast myosin but not with antibody to slow myosin. The initiation of fiber type differentiation can be detected in the 17-d fetus by a gradual increase in the binding of antibody to slow myosin in the primary, but not the secondary, generation myotubes. Moreover, neuromuscular contacts at this crucial time are infrequent, primitive, and restricted predominantly, but not exclusively, to the primary generation cells, the same cells which begin to bind large amounts of antislow myosin at this time. With maturation, the primary generation cells decrease their binding of antifast myosin and become type I fibers. Secondary generation cells are initially all primitive type II fibers. In future fast muscles the secondary generation cells remain type II, while in future slow muscles most of the secondary generation cells eventually change to type I over a prolonged postnatal period. We conclude that the temporal sequence of muscle development is fundamentally important in determining the genetic expression of individual muscle cells. The Rockefeller University Press 1981-07-01 /pmc/articles/PMC2111831/ /pubmed/7251670 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Development of muscle fiber specialization in the rat hindlimb
title Development of muscle fiber specialization in the rat hindlimb
title_full Development of muscle fiber specialization in the rat hindlimb
title_fullStr Development of muscle fiber specialization in the rat hindlimb
title_full_unstemmed Development of muscle fiber specialization in the rat hindlimb
title_short Development of muscle fiber specialization in the rat hindlimb
title_sort development of muscle fiber specialization in the rat hindlimb
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111831/
https://www.ncbi.nlm.nih.gov/pubmed/7251670