Cargando…
Microtubule-associated proteins (MAPs) and the organization of actin filaments in vitro
When purified muscle actin was mixed with microtubule-associated proteins (MAPs) prepared from brain microtubules assembled in vitro, actin filaments were organized into discrete bundles, 26 nm in diameter. MAP-2 was the principal protein necessary for the formation of the bundles. Analysis of MAP-a...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1981
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111865/ https://www.ncbi.nlm.nih.gov/pubmed/6270155 |
Sumario: | When purified muscle actin was mixed with microtubule-associated proteins (MAPs) prepared from brain microtubules assembled in vitro, actin filaments were organized into discrete bundles, 26 nm in diameter. MAP-2 was the principal protein necessary for the formation of the bundles. Analysis of MAP-actin bundle formation by sedimentation and electrophoresis revealed the bundles to be composed of approximately 20% MAP-2 and 80% actin by weight. Transverse striations were observed to occur at 28-nm intervals along negatively stained MAP- actin bundles, and short projections, approximately 12 nm long and spaced at 28-nm intervals, were resolved by high-resolution metal shadowing. The formation of MAP-actin bundles was inhibited by millimolar concentrations of ATP, AMP-PCP (beta, gamma-methylene- adenosine triphosphate), and pyrophosphate but not by AMP, ADP, or GTP. The addition of ATP to a solution containing MAP-actin bundles resulted in the dissociation of the bundles into individual actin filaments; discrete particles, presumably MAP-2, were periodically attached along the splayed filaments. These results demonstrate that MAPs can bind to actin filaments and can induce the reversible formation of actin filament bundles in vitro. |
---|