Cargando…
Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells
When mouse mammary epithelial cells are cultured on a plastic substratum, no basal lamina forms. When cultured on a type I collagen gel, the rate of glycosaminoglycan (GAG) synthesis is unchanged, but the rate of GAG degradation is markedly reduced and a GAG-rich, basal lamina-like structure accumul...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1981
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111933/ https://www.ncbi.nlm.nih.gov/pubmed/7298723 |
_version_ | 1782139839835013120 |
---|---|
collection | PubMed |
description | When mouse mammary epithelial cells are cultured on a plastic substratum, no basal lamina forms. When cultured on a type I collagen gel, the rate of glycosaminoglycan (GAG) synthesis is unchanged, but the rate of GAG degradation is markedly reduced and a GAG-rich, basal lamina-like structure accumulates. This effect of collagen was investigated by comparing the culture distribution, nature, and metabolic stability of the 35S-GAG-containing molecules produced by cells on plastic and collagen. During 48 h of labeling with 35SO4, cultures on collagen accumulate 1.4-fold more 35S-GAG per microgram of DNA. In these cultures, most of the extracellular 35S-GAG is immobilized with the lamina and collagen gel, whereas in cultures on plastic all extracellular 35S-GAG is soluble. On both substrata, the cells produce several heparan sulfate-rich 35S-proteoglycan fractions that are distinct by Sepharose CL-4B chromatography. The culture types contain similar amounts of each fraction, except that collagen cultures contain nearly four times more of a fraction that is found largely bound to the lamina and collagen gel. During a chase this proteoglycan fraction is stable in cultures on collagen, but is extensively degraded in cultures on plastic. Thus, collagen-induced formation of a basal lamina correlates with reduced degradation and enhanced accumulation of a specific heparan sulfate-rich proteoglycan fraction. Immobilization and stabilization of basal laminar proteoglycan(s) by interstitial collagen may be a physiological mechanism of basal lamina maintenance and assembly. |
format | Text |
id | pubmed-2111933 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1981 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21119332008-05-01 Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells J Cell Biol Articles When mouse mammary epithelial cells are cultured on a plastic substratum, no basal lamina forms. When cultured on a type I collagen gel, the rate of glycosaminoglycan (GAG) synthesis is unchanged, but the rate of GAG degradation is markedly reduced and a GAG-rich, basal lamina-like structure accumulates. This effect of collagen was investigated by comparing the culture distribution, nature, and metabolic stability of the 35S-GAG-containing molecules produced by cells on plastic and collagen. During 48 h of labeling with 35SO4, cultures on collagen accumulate 1.4-fold more 35S-GAG per microgram of DNA. In these cultures, most of the extracellular 35S-GAG is immobilized with the lamina and collagen gel, whereas in cultures on plastic all extracellular 35S-GAG is soluble. On both substrata, the cells produce several heparan sulfate-rich 35S-proteoglycan fractions that are distinct by Sepharose CL-4B chromatography. The culture types contain similar amounts of each fraction, except that collagen cultures contain nearly four times more of a fraction that is found largely bound to the lamina and collagen gel. During a chase this proteoglycan fraction is stable in cultures on collagen, but is extensively degraded in cultures on plastic. Thus, collagen-induced formation of a basal lamina correlates with reduced degradation and enhanced accumulation of a specific heparan sulfate-rich proteoglycan fraction. Immobilization and stabilization of basal laminar proteoglycan(s) by interstitial collagen may be a physiological mechanism of basal lamina maintenance and assembly. The Rockefeller University Press 1981-10-01 /pmc/articles/PMC2111933/ /pubmed/7298723 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells |
title | Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells |
title_full | Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells |
title_fullStr | Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells |
title_full_unstemmed | Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells |
title_short | Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells |
title_sort | type i collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111933/ https://www.ncbi.nlm.nih.gov/pubmed/7298723 |