Cargando…

Identification of histone H2b as a heat-shock protein in Drosophila

Total cell polypeptides synthesized, in cultured Drosophila cells under control (25 degrees C) and heat-shock (37 degrees C) conditions have been compared in two different two-dimensional polyacrylamide gel electrophoresis systems which, together, resolve polypeptides having a wide range of isoelect...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1981
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111965/
https://www.ncbi.nlm.nih.gov/pubmed/7309799
Descripción
Sumario:Total cell polypeptides synthesized, in cultured Drosophila cells under control (25 degrees C) and heat-shock (37 degrees C) conditions have been compared in two different two-dimensional polyacrylamide gel electrophoresis systems which, together, resolve polypeptides having a wide range of isoelectric points, including the most basic polypeptides of the cell. The electrophoresis of basic proteins showed that the most prominent basic polypeptide synthesized in heat shock comigrated with histone H2b. This heat-shock polypeptide was identified as histone H2b by two criteria: (a) it comigrated with authentic histone H2b in Triton- urea-acetic acid acrylamide gel electrophoresis after solubilization from nuclei with acid; and (b) partial proteolysis peptide maps of the basic heat-shock protein and histone H2b were identical. The synthesis of histone H2b was induced threefold in heat shock, whereas synthesis of the other histones was reduced from two- to tenfold. The noncoordinate synthesis of histones in Drosophila in heat shock provides an interesting system in which to investigate transcriptional and translational controls of histone synthesis as well as assembly of histones into chromatin.