Cargando…

Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin

The pseudopods of Caenorhabditis elegans spermatozoa move actively causing some cells to translocate when the sperm are dissected into a low osmotic strength buffered salts solution. On time-lapse video tapes, pseudopodial projections can be seen moving at 20-45 micrometers/min from the tip to the b...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111997/
https://www.ncbi.nlm.nih.gov/pubmed/7199049
_version_ 1782139854352547840
collection PubMed
description The pseudopods of Caenorhabditis elegans spermatozoa move actively causing some cells to translocate when the sperm are dissected into a low osmotic strength buffered salts solution. On time-lapse video tapes, pseudopodial projections can be seen moving at 20-45 micrometers/min from the tip to the base of the pseudopod. This movement occurs whether or not the cell is attached to a substrate. Translocation of the cell is dependent on the substrate. Some spermatozoa translocate on acid-washed glass, but a better substrate is prepared by drying an extract of Ascaris uteri (the normal site of nematode sperm motility) onto glass slides. On this substrate more than half the spermatozoa translocate at a velocity (21 micrometers/min) similar to that observed in vivo. Translocating cells attach to the substrate by their pseudopodial projections. They always move toward the pseudopod; changes in direction are caused by changes in pseudopod shape that determine points of detachment and reattachment of the cell to the substrate. Actin comprises less than 0.02% of the proteins in sperm, and myosin is undetectable. No microfilaments are found in the sperm. Immunohistochemistry shows that some actin is localized in patches in the pseudopod. The movement of spermatozoa is unaffected by cytochalasins, however, so there is no evidence that actin participates in locomotion. Fertilization-defective mutants in genes fer-2, fer-4, and fer-6 produce spermatozoa with defective pseudopodial projections, and these spermatozoa are largely immotile. Mutants in the spermatozoa do not translocate. Thus pseudopod movement is correlated with the presence of normal projections. Twelve mutants with defective muscles have spermatozoa with normal movement, so these genes do not specify products needed for both muscle and nonmuscle cell motility.
format Text
id pubmed-2111997
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21119972008-05-01 Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin J Cell Biol Articles The pseudopods of Caenorhabditis elegans spermatozoa move actively causing some cells to translocate when the sperm are dissected into a low osmotic strength buffered salts solution. On time-lapse video tapes, pseudopodial projections can be seen moving at 20-45 micrometers/min from the tip to the base of the pseudopod. This movement occurs whether or not the cell is attached to a substrate. Translocation of the cell is dependent on the substrate. Some spermatozoa translocate on acid-washed glass, but a better substrate is prepared by drying an extract of Ascaris uteri (the normal site of nematode sperm motility) onto glass slides. On this substrate more than half the spermatozoa translocate at a velocity (21 micrometers/min) similar to that observed in vivo. Translocating cells attach to the substrate by their pseudopodial projections. They always move toward the pseudopod; changes in direction are caused by changes in pseudopod shape that determine points of detachment and reattachment of the cell to the substrate. Actin comprises less than 0.02% of the proteins in sperm, and myosin is undetectable. No microfilaments are found in the sperm. Immunohistochemistry shows that some actin is localized in patches in the pseudopod. The movement of spermatozoa is unaffected by cytochalasins, however, so there is no evidence that actin participates in locomotion. Fertilization-defective mutants in genes fer-2, fer-4, and fer-6 produce spermatozoa with defective pseudopodial projections, and these spermatozoa are largely immotile. Mutants in the spermatozoa do not translocate. Thus pseudopod movement is correlated with the presence of normal projections. Twelve mutants with defective muscles have spermatozoa with normal movement, so these genes do not specify products needed for both muscle and nonmuscle cell motility. The Rockefeller University Press 1982-01-01 /pmc/articles/PMC2111997/ /pubmed/7199049 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin
title Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin
title_full Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin
title_fullStr Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin
title_full_unstemmed Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin
title_short Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin
title_sort caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111997/
https://www.ncbi.nlm.nih.gov/pubmed/7199049