Cargando…

Intercellular junctions and transfer of small molecules in primary vascular endothelial cultures

The ultrastructure of gap and tight junctions and the cell-to-cell transfer of small molecules were studied in primary cultures and freshly isolated sheets of endothelial cells from calf aortae and umbilical veins. In thin sections and in freeze-fracture replicas, the gap and tight junctions in the...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112005/
https://www.ncbi.nlm.nih.gov/pubmed/7056799
Descripción
Sumario:The ultrastructure of gap and tight junctions and the cell-to-cell transfer of small molecules were studied in primary cultures and freshly isolated sheets of endothelial cells from calf aortae and umbilical veins. In thin sections and in freeze-fracture replicas, the gap and tight junctions in the freshly isolated cells from both sources appeared similar to those found in the intimal endothelium. Most of the interfaces in replicas had complex arrays of multiple gap junctions either intercalated within tight junction networks or interconnected by linear particle strands. The particle density in the center of most gap junctions was noticeably reduced. In confluent monolayers, after 3-5 days in culture, gap and tight junctions were present, although reduced in complexity and apparent extent. Despite the relative simplicity of the junctions, the cell-to-cell transfer of potential changes, dye (Lucifer Yellow CH), and nucleotides was readily detectable in cultures of both endothelial cell types. The extent and rapidity of dye transfer in culture was only slightly less than that in sheets of freshly isolated cells, perhaps reflecting a reduced gap junctional area combined with an increase in cell size in vitro.