Cargando…

Acetylcholine receptor: effects of proteolysis on receptor metabolism

Previous studies (Miskin, R., T. G. Easton, and E. Reich, 1970, Cell. 15:1301-1312) have shown that sarcoma virus transformation and tumor promoters reduced the cell surface concentration of acetylcholine receptors (AChR) in differentiating chick embryo myogenic cultures. Both of these agents also i...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112021/
https://www.ncbi.nlm.nih.gov/pubmed/6460038
_version_ 1782139859958235136
collection PubMed
description Previous studies (Miskin, R., T. G. Easton, and E. Reich, 1970, Cell. 15:1301-1312) have shown that sarcoma virus transformation and tumor promoters reduced the cell surface concentration of acetylcholine receptors (AChR) in differentiating chick embryo myogenic cultures. Both of these agents also induced high rates of plasminogen activator (PA) synthesis in myogenic cultures (Miskin, R., T. G. Easton, A. Maelicke, and E. Reich, 1978, Cell. 15:1287-1300), and the present work was performed to establish whether proteolysis might significantly affect receptor metabolism. Proteolysis in myogenic cultures was modulated by one or more of the following: stimulation of PA synthesis, direct addition of plasmin, removal of plasminogen, or addition of plasmin inhibitors. The results were: (a) When the rates of proteolysis were raised either by addition of plasmin or by stimulating PA synthesis in the presence of plasminogen, both the steady-state concentration and the half-life of surface AChR decreased, but the rate of receptor synthesis was unaffected. (b) The magnitude of these effects, and their dependence on added plasminogen, indicated that proteolysis initiated by plasminogen activation could account almost entirely for the reduction in receptor half-life produced by sarcoma virus transformation and phorbol ester. (c) The rate of receptor synthesis, which is also reduced by viral transformation and tumor promoters, was not modified by proteolysis; hence plasmin action may be responsible for a large part, but not all of the change in surface receptor under these conditions. (d) The plasmin catalysed changes in receptor parameters appear to occur in response to modified membrane metabolism resulting from proteolysis of surface components other than AChR itself.
format Text
id pubmed-2112021
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21120212008-05-01 Acetylcholine receptor: effects of proteolysis on receptor metabolism J Cell Biol Articles Previous studies (Miskin, R., T. G. Easton, and E. Reich, 1970, Cell. 15:1301-1312) have shown that sarcoma virus transformation and tumor promoters reduced the cell surface concentration of acetylcholine receptors (AChR) in differentiating chick embryo myogenic cultures. Both of these agents also induced high rates of plasminogen activator (PA) synthesis in myogenic cultures (Miskin, R., T. G. Easton, A. Maelicke, and E. Reich, 1978, Cell. 15:1287-1300), and the present work was performed to establish whether proteolysis might significantly affect receptor metabolism. Proteolysis in myogenic cultures was modulated by one or more of the following: stimulation of PA synthesis, direct addition of plasmin, removal of plasminogen, or addition of plasmin inhibitors. The results were: (a) When the rates of proteolysis were raised either by addition of plasmin or by stimulating PA synthesis in the presence of plasminogen, both the steady-state concentration and the half-life of surface AChR decreased, but the rate of receptor synthesis was unaffected. (b) The magnitude of these effects, and their dependence on added plasminogen, indicated that proteolysis initiated by plasminogen activation could account almost entirely for the reduction in receptor half-life produced by sarcoma virus transformation and phorbol ester. (c) The rate of receptor synthesis, which is also reduced by viral transformation and tumor promoters, was not modified by proteolysis; hence plasmin action may be responsible for a large part, but not all of the change in surface receptor under these conditions. (d) The plasmin catalysed changes in receptor parameters appear to occur in response to modified membrane metabolism resulting from proteolysis of surface components other than AChR itself. The Rockefeller University Press 1982-01-01 /pmc/articles/PMC2112021/ /pubmed/6460038 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Acetylcholine receptor: effects of proteolysis on receptor metabolism
title Acetylcholine receptor: effects of proteolysis on receptor metabolism
title_full Acetylcholine receptor: effects of proteolysis on receptor metabolism
title_fullStr Acetylcholine receptor: effects of proteolysis on receptor metabolism
title_full_unstemmed Acetylcholine receptor: effects of proteolysis on receptor metabolism
title_short Acetylcholine receptor: effects of proteolysis on receptor metabolism
title_sort acetylcholine receptor: effects of proteolysis on receptor metabolism
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112021/
https://www.ncbi.nlm.nih.gov/pubmed/6460038