Cargando…

Identification of phagocytosis-associated surface proteins of macrophages by two-dimensional gel electrophoresis

Two-dimensional PAGE (P. Z. O'Farrell, H. M. Goodman, and P. H. O'Farrell. 1977. Cell. 12:1133-1142) has been employed to assess the effects of antibody-dependent phagocytosis on the cell surface protein composition of RAW264 macrophages. Unilamellar phospholipid vesicles containing 1% din...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112062/
https://www.ncbi.nlm.nih.gov/pubmed/7061587
Descripción
Sumario:Two-dimensional PAGE (P. Z. O'Farrell, H. M. Goodman, and P. H. O'Farrell. 1977. Cell. 12:1133-1142) has been employed to assess the effects of antibody-dependent phagocytosis on the cell surface protein composition of RAW264 macrophages. Unilamellar phospholipid vesicles containing 1% dinitrophenyl-aminocaproyl-phosphatidylethanolamine (DNP- cap-PE) were used as the target particle. Macrophages were exposed to anti-DNP antibody alone, vesicles alone, or vesicles in the presence of antibody for 1 h at 37 degrees C. Cell surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination at 4 degrees C. After detergent solubilization, membrane proteins were analyzed by two- dimensional gel electrophoresis. The resulting pattern of spots was compared to that of standard proteins. We have identified several surface proteins, not apparently associated with the phagocytic process, which are present either in a multichain structure or in several discretely charged forms. After phagocytosis, we have observed the appearance of two proteins of 45 and 50 kdaltons in nonreducing gels. In addition, we have noted the disappearance of a 140-kdalton protein in gels run under reducing conditions. These alterations would not be detected in the conventional one-dimensional gel electrophoresis. This evidence shows that phagocytosis leads to a modification of cell surface protein composition. Our results support the concept of specific enrichment and depletion of membrane components during antibody-dependent phagocytosis.