Cargando…

A novel 36,000-dalton actin-binding protein purified from microfilaments in Physarum plasmodia which aggregates actin filaments and blocks actin-myosin interaction

In the plasmodia of Physarum polycephalum, which show a cyclic contraction-relaxation rhythm of the gel layer, huge aggregates of entangled actin microfilaments are formed at about the onset of the relaxation (R. Nagai, Y. Yoshimoto, and N. Kamiya. 1978. J. Cell Sci. 33:205-225). By treating the pla...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112137/
https://www.ncbi.nlm.nih.gov/pubmed/6126481
Descripción
Sumario:In the plasmodia of Physarum polycephalum, which show a cyclic contraction-relaxation rhythm of the gel layer, huge aggregates of entangled actin microfilaments are formed at about the onset of the relaxation (R. Nagai, Y. Yoshimoto, and N. Kamiya. 1978. J. Cell Sci. 33:205-225). By treating the plasmodia with Triton X-100, we prepared a demembranated cytoskeleton consisting of entangled actin filaments and found that the actin filaments hardly interact with rabbit skeletal myosin. From the cytoskeleton we purified a novel actin-binding protein which binds stoichiometrically to actin and makes actin filaments curled and aggregated. It also inhibits the ATPase activity as well as the superprecipitation of reconstituted rabbit skeletal muscle actomyosin. This protein has a polypeptide molecular weight of 36,000 and binds 7 mol of actin/mol 36,000 polypeptide.