Cargando…

An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage

Monospecific antibodies to bovine cartilage proteoglycan monomer (PG) and link protein (LP) have been used with immunoperoxidase electron microscopy to study the distribution and organization of these molecules in bovine articular cartilage. The following observations were made: (a) The interterrito...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112142/
https://www.ncbi.nlm.nih.gov/pubmed/7119005
_version_ 1782139888548708352
collection PubMed
description Monospecific antibodies to bovine cartilage proteoglycan monomer (PG) and link protein (LP) have been used with immunoperoxidase electron microscopy to study the distribution and organization of these molecules in bovine articular cartilage. The following observations were made: (a) The interterritorial matrix of the deep zone contained discrete interfibrillar particulate staining for PG and LP. This particulate staining, which was linked by faint bands of staining (for PG) or filaments (for LP), was spaced at 75- to 80-nm intervals. On collagen fibrils PG was also detected as particulate staining spaced at regular intervals (72 nm), corresponding to the periodicity of collagen cross-banding. The interfibrillar PG staining was often linked to the fibrillar PG staining by the same bands or filaments. The latter were cleaved by a proteinase-free Streptomyces hyaluronidase with the removal of much of the interfibrillar lattice. Since this enzyme has a specificity for hyaluronic acid, the observations indicate that the lattice contains a backbone of hyaluronic acid (which appeared as banded or filamentous staining) to which is attached LP and PG, the latter collapsing when the tissue is fixed, reacted with antibodies, and prepared for electron microscopy. Thishyaluronic acid is anchored to collagen fibrils at regular intervals where PG is detected on collagen. PG and LP detected by antibody in the interterritorial zones are essentially fully extractible with 4 M guanidine hydrochloride. These observations indicated that interfibrillar PG and LP is aggregated with HA in this zone. (b) The remainder of the cartilage matrix had a completely different organization of PG and LP. There was no evidence of a similar latticework based on hyaluronic acid. Instead, smaller more closely packed particulate staining for PG was seen everywhere irregularly distributed over and close to collagen fibrils. LP was almost undetectable in the territorial matrix of the deep zone, as observed previously. In the middle and superficial zones, stronger semiparticulate staining for LP was distributed over collagen fibrils. (c) In the superficial zone, reaction product for PG was distributed evenly on collagen fibrils as diffuse staining and also irregularly as particulate staining. LP was observed as semiparticulate staining over collagen fibrils. The diffuse staining for PG remained after extraction with 4 M guanidine hydrochloride. (d) In pericellular matrix, most clearly identified in middle and deep zones, the nature and organization of reaction product for PG and LP were similar to those observed in the territorial matrix, except that LP and PG were more strongly stained and amorphous staining for both components was also observed. (e) This study demonstrates striking regional variations of ultrastructural organization of PG and LP in articular cartilage...
format Text
id pubmed-2112142
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21121422008-05-01 An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage J Cell Biol Articles Monospecific antibodies to bovine cartilage proteoglycan monomer (PG) and link protein (LP) have been used with immunoperoxidase electron microscopy to study the distribution and organization of these molecules in bovine articular cartilage. The following observations were made: (a) The interterritorial matrix of the deep zone contained discrete interfibrillar particulate staining for PG and LP. This particulate staining, which was linked by faint bands of staining (for PG) or filaments (for LP), was spaced at 75- to 80-nm intervals. On collagen fibrils PG was also detected as particulate staining spaced at regular intervals (72 nm), corresponding to the periodicity of collagen cross-banding. The interfibrillar PG staining was often linked to the fibrillar PG staining by the same bands or filaments. The latter were cleaved by a proteinase-free Streptomyces hyaluronidase with the removal of much of the interfibrillar lattice. Since this enzyme has a specificity for hyaluronic acid, the observations indicate that the lattice contains a backbone of hyaluronic acid (which appeared as banded or filamentous staining) to which is attached LP and PG, the latter collapsing when the tissue is fixed, reacted with antibodies, and prepared for electron microscopy. Thishyaluronic acid is anchored to collagen fibrils at regular intervals where PG is detected on collagen. PG and LP detected by antibody in the interterritorial zones are essentially fully extractible with 4 M guanidine hydrochloride. These observations indicated that interfibrillar PG and LP is aggregated with HA in this zone. (b) The remainder of the cartilage matrix had a completely different organization of PG and LP. There was no evidence of a similar latticework based on hyaluronic acid. Instead, smaller more closely packed particulate staining for PG was seen everywhere irregularly distributed over and close to collagen fibrils. LP was almost undetectable in the territorial matrix of the deep zone, as observed previously. In the middle and superficial zones, stronger semiparticulate staining for LP was distributed over collagen fibrils. (c) In the superficial zone, reaction product for PG was distributed evenly on collagen fibrils as diffuse staining and also irregularly as particulate staining. LP was observed as semiparticulate staining over collagen fibrils. The diffuse staining for PG remained after extraction with 4 M guanidine hydrochloride. (d) In pericellular matrix, most clearly identified in middle and deep zones, the nature and organization of reaction product for PG and LP were similar to those observed in the territorial matrix, except that LP and PG were more strongly stained and amorphous staining for both components was also observed. (e) This study demonstrates striking regional variations of ultrastructural organization of PG and LP in articular cartilage... The Rockefeller University Press 1982-06-01 /pmc/articles/PMC2112142/ /pubmed/7119005 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage
title An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage
title_full An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage
title_fullStr An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage
title_full_unstemmed An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage
title_short An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage
title_sort immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112142/
https://www.ncbi.nlm.nih.gov/pubmed/7119005