Cargando…

Fluorescent phycobiliprotein conjugates for analyses of cells and molecules

The synthesis of a novel class of reagents for fluorescence analyses of molecules and cells is reported. These compounds consist of a highly fluorescent phycobiliprotein conjugated to a molecule having biological specificity. Phycoerythrin-immunoglobulin, phycoerythrin-protein A, and phycoerythrin-a...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112146/
https://www.ncbi.nlm.nih.gov/pubmed/6749865
_version_ 1782139889458872320
collection PubMed
description The synthesis of a novel class of reagents for fluorescence analyses of molecules and cells is reported. These compounds consist of a highly fluorescent phycobiliprotein conjugated to a molecule having biological specificity. Phycoerythrin-immunoglobulin, phycoerythrin-protein A, and phycoerythrin-avidin conjugates were prepared. These conjugates bind specifically to beads containing a covalently attached target molecule and render them highly fluorescent. Femtomole (10(-15) mole) quantities of phycoerythrin conjugates can be detected because of the high extinction coefficient (epsilon M = 2.4 x 10(6) cm-1 M-1 for 2.4 x 10(5) daltons) and high fluorescence quantum yield (Q = 0.8) of the phycobiliprotein moiety. An important feature of these conjugates is that they emit in the orange-red spectral region, where background fluorescence is less than at shorter wavelengths. Phycoerythrin conjugates are well-suited for two-color flow cytofluorimetric analyses employing a single excitation line. The distributions of Leu antigens (also called OKT antigens) on the surface of T-lymphocytes were analyzed using fluoresceinated antibody as the green-fluorescent stain and biotinylated antibody counter-stained with phycoerythrin-avidin as the red one. This one-laser two-color analysis showed that cells express Leu-3a and Leu-3b or neither antigen. In contrast, the distributions of Leu-2a (a marker of suppressor and cytotoxic T-cells) and Leu-3a (a marker of helper and inducer T-cells) are mutually exclusive. These studies show that phycobiliprotein conjugates can be applied to fluorescence-activated cell sorting and analysis, fluorescence microscopy, and fluorescence immunoassay.
format Text
id pubmed-2112146
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21121462008-05-01 Fluorescent phycobiliprotein conjugates for analyses of cells and molecules J Cell Biol Articles The synthesis of a novel class of reagents for fluorescence analyses of molecules and cells is reported. These compounds consist of a highly fluorescent phycobiliprotein conjugated to a molecule having biological specificity. Phycoerythrin-immunoglobulin, phycoerythrin-protein A, and phycoerythrin-avidin conjugates were prepared. These conjugates bind specifically to beads containing a covalently attached target molecule and render them highly fluorescent. Femtomole (10(-15) mole) quantities of phycoerythrin conjugates can be detected because of the high extinction coefficient (epsilon M = 2.4 x 10(6) cm-1 M-1 for 2.4 x 10(5) daltons) and high fluorescence quantum yield (Q = 0.8) of the phycobiliprotein moiety. An important feature of these conjugates is that they emit in the orange-red spectral region, where background fluorescence is less than at shorter wavelengths. Phycoerythrin conjugates are well-suited for two-color flow cytofluorimetric analyses employing a single excitation line. The distributions of Leu antigens (also called OKT antigens) on the surface of T-lymphocytes were analyzed using fluoresceinated antibody as the green-fluorescent stain and biotinylated antibody counter-stained with phycoerythrin-avidin as the red one. This one-laser two-color analysis showed that cells express Leu-3a and Leu-3b or neither antigen. In contrast, the distributions of Leu-2a (a marker of suppressor and cytotoxic T-cells) and Leu-3a (a marker of helper and inducer T-cells) are mutually exclusive. These studies show that phycobiliprotein conjugates can be applied to fluorescence-activated cell sorting and analysis, fluorescence microscopy, and fluorescence immunoassay. The Rockefeller University Press 1982-06-01 /pmc/articles/PMC2112146/ /pubmed/6749865 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Fluorescent phycobiliprotein conjugates for analyses of cells and molecules
title Fluorescent phycobiliprotein conjugates for analyses of cells and molecules
title_full Fluorescent phycobiliprotein conjugates for analyses of cells and molecules
title_fullStr Fluorescent phycobiliprotein conjugates for analyses of cells and molecules
title_full_unstemmed Fluorescent phycobiliprotein conjugates for analyses of cells and molecules
title_short Fluorescent phycobiliprotein conjugates for analyses of cells and molecules
title_sort fluorescent phycobiliprotein conjugates for analyses of cells and molecules
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112146/
https://www.ncbi.nlm.nih.gov/pubmed/6749865