Cargando…
Fluorescent phycobiliprotein conjugates for analyses of cells and molecules
The synthesis of a novel class of reagents for fluorescence analyses of molecules and cells is reported. These compounds consist of a highly fluorescent phycobiliprotein conjugated to a molecule having biological specificity. Phycoerythrin-immunoglobulin, phycoerythrin-protein A, and phycoerythrin-a...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1982
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112146/ https://www.ncbi.nlm.nih.gov/pubmed/6749865 |
_version_ | 1782139889458872320 |
---|---|
collection | PubMed |
description | The synthesis of a novel class of reagents for fluorescence analyses of molecules and cells is reported. These compounds consist of a highly fluorescent phycobiliprotein conjugated to a molecule having biological specificity. Phycoerythrin-immunoglobulin, phycoerythrin-protein A, and phycoerythrin-avidin conjugates were prepared. These conjugates bind specifically to beads containing a covalently attached target molecule and render them highly fluorescent. Femtomole (10(-15) mole) quantities of phycoerythrin conjugates can be detected because of the high extinction coefficient (epsilon M = 2.4 x 10(6) cm-1 M-1 for 2.4 x 10(5) daltons) and high fluorescence quantum yield (Q = 0.8) of the phycobiliprotein moiety. An important feature of these conjugates is that they emit in the orange-red spectral region, where background fluorescence is less than at shorter wavelengths. Phycoerythrin conjugates are well-suited for two-color flow cytofluorimetric analyses employing a single excitation line. The distributions of Leu antigens (also called OKT antigens) on the surface of T-lymphocytes were analyzed using fluoresceinated antibody as the green-fluorescent stain and biotinylated antibody counter-stained with phycoerythrin-avidin as the red one. This one-laser two-color analysis showed that cells express Leu-3a and Leu-3b or neither antigen. In contrast, the distributions of Leu-2a (a marker of suppressor and cytotoxic T-cells) and Leu-3a (a marker of helper and inducer T-cells) are mutually exclusive. These studies show that phycobiliprotein conjugates can be applied to fluorescence-activated cell sorting and analysis, fluorescence microscopy, and fluorescence immunoassay. |
format | Text |
id | pubmed-2112146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1982 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21121462008-05-01 Fluorescent phycobiliprotein conjugates for analyses of cells and molecules J Cell Biol Articles The synthesis of a novel class of reagents for fluorescence analyses of molecules and cells is reported. These compounds consist of a highly fluorescent phycobiliprotein conjugated to a molecule having biological specificity. Phycoerythrin-immunoglobulin, phycoerythrin-protein A, and phycoerythrin-avidin conjugates were prepared. These conjugates bind specifically to beads containing a covalently attached target molecule and render them highly fluorescent. Femtomole (10(-15) mole) quantities of phycoerythrin conjugates can be detected because of the high extinction coefficient (epsilon M = 2.4 x 10(6) cm-1 M-1 for 2.4 x 10(5) daltons) and high fluorescence quantum yield (Q = 0.8) of the phycobiliprotein moiety. An important feature of these conjugates is that they emit in the orange-red spectral region, where background fluorescence is less than at shorter wavelengths. Phycoerythrin conjugates are well-suited for two-color flow cytofluorimetric analyses employing a single excitation line. The distributions of Leu antigens (also called OKT antigens) on the surface of T-lymphocytes were analyzed using fluoresceinated antibody as the green-fluorescent stain and biotinylated antibody counter-stained with phycoerythrin-avidin as the red one. This one-laser two-color analysis showed that cells express Leu-3a and Leu-3b or neither antigen. In contrast, the distributions of Leu-2a (a marker of suppressor and cytotoxic T-cells) and Leu-3a (a marker of helper and inducer T-cells) are mutually exclusive. These studies show that phycobiliprotein conjugates can be applied to fluorescence-activated cell sorting and analysis, fluorescence microscopy, and fluorescence immunoassay. The Rockefeller University Press 1982-06-01 /pmc/articles/PMC2112146/ /pubmed/6749865 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Fluorescent phycobiliprotein conjugates for analyses of cells and molecules |
title | Fluorescent phycobiliprotein conjugates for analyses of cells and molecules |
title_full | Fluorescent phycobiliprotein conjugates for analyses of cells and molecules |
title_fullStr | Fluorescent phycobiliprotein conjugates for analyses of cells and molecules |
title_full_unstemmed | Fluorescent phycobiliprotein conjugates for analyses of cells and molecules |
title_short | Fluorescent phycobiliprotein conjugates for analyses of cells and molecules |
title_sort | fluorescent phycobiliprotein conjugates for analyses of cells and molecules |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112146/ https://www.ncbi.nlm.nih.gov/pubmed/6749865 |