Cargando…
Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins
Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coat...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1982
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112188/ https://www.ncbi.nlm.nih.gov/pubmed/6749866 |
Sumario: | Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to restore the adhesive properties of pronase-treated cells, showing the protein nature of the molecules involved in adhesion to fibronectin. A peculiar feature of these proteins was their resistance to cleavage by trypsin. After prolonged trypsin treatment (1 mg/ml for 20 min at 37 degrees C), cells adhered and spread on fibronectin-coated dishes, even when protein synthesis was inhibited by 4 microM cycloheximide. Under these conditions only three glycoproteins (gp) of molecular weight 130,000, 120,000, and 80,000 were left on the cell surface. These were precipitated by a rabbit antiserum against BHK cells that also inhibited adhesion of trypsin-treated cells. gp120 and gp80 were left at the cell surface after mild pronase digestion (0.2 mg/ml for 20 min at 37 degrees C), under conditions not affecting adhesion. These data suggest that these glycoproteins may be involved in fibronectin-mediated cell adhesion in some yet unknown way. |
---|