Cargando…

Partial purification of presynaptic plasma membrane by immunoadsorption

During transmitter release, synaptic vesicle membrane is specifically inserted into the nerve terminal plasma membrane only at specialized sites or "active zones." In an attempt to obtain a membrane fraction enriched in active zones, we have utilized the electric organ of the marine ray. F...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112194/
https://www.ncbi.nlm.nih.gov/pubmed/6749869
_version_ 1782139900648226816
collection PubMed
description During transmitter release, synaptic vesicle membrane is specifically inserted into the nerve terminal plasma membrane only at specialized sites or "active zones." In an attempt to obtain a membrane fraction enriched in active zones, we have utilized the electric organ of the marine ray. From this organ, a fraction enriched in nerve terminals (synaptosomes) was prepared by conventional means. These synaptosomes were bound to microscopic beads by an antiserum to purified electric organ synaptic vesicles (anti-SV). The success of this immunoadsorption procedure was demonstrated by increased specific activities of bead- bound nerve terminal cytoplasmic markers and decreased specific activities of markers for contaminating membranes. To obtain a presynaptic plasma membrane (PSPM) fraction, we lysed the bead-bound synaptosomes by hypoosmotic shock and sonication, resulting in complete release of cytoplasmic markers. When the synaptosomal fraction was surface-labeled with iodine before immunoadsorption, 10% of this label remained bead-bound after lysis, compared with 2% of the total protein, indicating an approximately fivefold enrichment of bead-bound plasma membrane. Concomitantly, the specific activity of bead-bound anti-SV increased approximately 30-fold, indicating an enrichment of plasma membrane which contained inserted synaptic vesicle components. This PSPM preparation is not simply synaptic vesicle membrane since two- dimensional electrophoresis revealed that the polypeptides of the surface-iodinated PSPM preparation include both vesicle and numerous nonvesicle components. Secondly, antiserum to the PSPM fraction is markedly different from anti-SV and binds to external, nonvesicle, nerve terminal components.
format Text
id pubmed-2112194
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21121942008-05-01 Partial purification of presynaptic plasma membrane by immunoadsorption J Cell Biol Articles During transmitter release, synaptic vesicle membrane is specifically inserted into the nerve terminal plasma membrane only at specialized sites or "active zones." In an attempt to obtain a membrane fraction enriched in active zones, we have utilized the electric organ of the marine ray. From this organ, a fraction enriched in nerve terminals (synaptosomes) was prepared by conventional means. These synaptosomes were bound to microscopic beads by an antiserum to purified electric organ synaptic vesicles (anti-SV). The success of this immunoadsorption procedure was demonstrated by increased specific activities of bead- bound nerve terminal cytoplasmic markers and decreased specific activities of markers for contaminating membranes. To obtain a presynaptic plasma membrane (PSPM) fraction, we lysed the bead-bound synaptosomes by hypoosmotic shock and sonication, resulting in complete release of cytoplasmic markers. When the synaptosomal fraction was surface-labeled with iodine before immunoadsorption, 10% of this label remained bead-bound after lysis, compared with 2% of the total protein, indicating an approximately fivefold enrichment of bead-bound plasma membrane. Concomitantly, the specific activity of bead-bound anti-SV increased approximately 30-fold, indicating an enrichment of plasma membrane which contained inserted synaptic vesicle components. This PSPM preparation is not simply synaptic vesicle membrane since two- dimensional electrophoresis revealed that the polypeptides of the surface-iodinated PSPM preparation include both vesicle and numerous nonvesicle components. Secondly, antiserum to the PSPM fraction is markedly different from anti-SV and binds to external, nonvesicle, nerve terminal components. The Rockefeller University Press 1982-07-01 /pmc/articles/PMC2112194/ /pubmed/6749869 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Partial purification of presynaptic plasma membrane by immunoadsorption
title Partial purification of presynaptic plasma membrane by immunoadsorption
title_full Partial purification of presynaptic plasma membrane by immunoadsorption
title_fullStr Partial purification of presynaptic plasma membrane by immunoadsorption
title_full_unstemmed Partial purification of presynaptic plasma membrane by immunoadsorption
title_short Partial purification of presynaptic plasma membrane by immunoadsorption
title_sort partial purification of presynaptic plasma membrane by immunoadsorption
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112194/
https://www.ncbi.nlm.nih.gov/pubmed/6749869