Cargando…

A new determinant of glucocorticoid sensitivity in lymphoid cell lines

The SAK cell line, derived from a spontaneous thymic lymphoma in an AKR mouse, is resistant to lysis by glucocorticoids in spite of the presence of functional glucocorticoid receptor. Receptor function was determined by hormone binding analyses, as well as characterization of hormonal effects on cel...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112284/
https://www.ncbi.nlm.nih.gov/pubmed/6601107
_version_ 1782139921276862464
collection PubMed
description The SAK cell line, derived from a spontaneous thymic lymphoma in an AKR mouse, is resistant to lysis by glucocorticoids in spite of the presence of functional glucocorticoid receptor. Receptor function was determined by hormone binding analyses, as well as characterization of hormonal effects on cell growth and on the accumulation of murine leukemia virus and metallothionein mRNAs. SAK cells were fused with a receptor-defective (and therefore resistant) variant of a well- characterized murine thymoma line, W7. The resulting hybrids are glucocorticoid sensitive, demonstrating complementation of the receptor defect in W7 cells by the functional glucocorticoid receptor of SAK. This fusion shows that SAK cells are resistant to the hormone due to the absence of another function designated "I" for lysis. SAK cells were also fused with glucocorticoid-sensitive W7 cells (containing wild- type receptor), generating glucocorticoid-sensitive hybrids, which demonstrate that the dexamethasone-resistant phenotype of the SAK cells is recessive. Resistant derivatives of this hybrid were found which still contain the full amount of receptor. Chromosome analysis revealed that, on the average, the resistant derivatives had lost two chromosomes, suggesting segregation of chromosomes carrying genetic material necessary for the "lysis" function. The drug 5-azacytidine (a known inhibitor of DNA methylation) has been shown to cause heritable changes in gene expression. Treatment of SAK cells with 5-azacytidine generated glucocorticoid-sensitive clones at high frequency, suggesting that the gene(s) involved in the "lysis" function are intact and have been inactivated through a process such as differentiation.
format Text
id pubmed-2112284
institution National Center for Biotechnology Information
language English
publishDate 1983
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21122842008-05-01 A new determinant of glucocorticoid sensitivity in lymphoid cell lines J Cell Biol Articles The SAK cell line, derived from a spontaneous thymic lymphoma in an AKR mouse, is resistant to lysis by glucocorticoids in spite of the presence of functional glucocorticoid receptor. Receptor function was determined by hormone binding analyses, as well as characterization of hormonal effects on cell growth and on the accumulation of murine leukemia virus and metallothionein mRNAs. SAK cells were fused with a receptor-defective (and therefore resistant) variant of a well- characterized murine thymoma line, W7. The resulting hybrids are glucocorticoid sensitive, demonstrating complementation of the receptor defect in W7 cells by the functional glucocorticoid receptor of SAK. This fusion shows that SAK cells are resistant to the hormone due to the absence of another function designated "I" for lysis. SAK cells were also fused with glucocorticoid-sensitive W7 cells (containing wild- type receptor), generating glucocorticoid-sensitive hybrids, which demonstrate that the dexamethasone-resistant phenotype of the SAK cells is recessive. Resistant derivatives of this hybrid were found which still contain the full amount of receptor. Chromosome analysis revealed that, on the average, the resistant derivatives had lost two chromosomes, suggesting segregation of chromosomes carrying genetic material necessary for the "lysis" function. The drug 5-azacytidine (a known inhibitor of DNA methylation) has been shown to cause heritable changes in gene expression. Treatment of SAK cells with 5-azacytidine generated glucocorticoid-sensitive clones at high frequency, suggesting that the gene(s) involved in the "lysis" function are intact and have been inactivated through a process such as differentiation. The Rockefeller University Press 1983-02-01 /pmc/articles/PMC2112284/ /pubmed/6601107 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
A new determinant of glucocorticoid sensitivity in lymphoid cell lines
title A new determinant of glucocorticoid sensitivity in lymphoid cell lines
title_full A new determinant of glucocorticoid sensitivity in lymphoid cell lines
title_fullStr A new determinant of glucocorticoid sensitivity in lymphoid cell lines
title_full_unstemmed A new determinant of glucocorticoid sensitivity in lymphoid cell lines
title_short A new determinant of glucocorticoid sensitivity in lymphoid cell lines
title_sort new determinant of glucocorticoid sensitivity in lymphoid cell lines
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112284/
https://www.ncbi.nlm.nih.gov/pubmed/6601107