Cargando…

Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation

The compositional relationship between the cell surface of rabbit polymorphonuclear leukocytes (PMNs) and the membranes of PMN cytoplasmic granules has been investigated. Heterophilic PMNs obtained from peritoneal exudates contained 13 cell surface polypeptides ranging in molecular weight from 220,0...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, WJ, Shannon, WA, Snell, WJ
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112317/
https://www.ncbi.nlm.nih.gov/pubmed/6833389
_version_ 1782139929015353344
author Brown, WJ
Shannon, WA
Snell, WJ
author_facet Brown, WJ
Shannon, WA
Snell, WJ
author_sort Brown, WJ
collection PubMed
description The compositional relationship between the cell surface of rabbit polymorphonuclear leukocytes (PMNs) and the membranes of PMN cytoplasmic granules has been investigated. Heterophilic PMNs obtained from peritoneal exudates contained 13 cell surface polypeptides ranging in molecular weight from 220,000 to 12,000 daltons as determined by lactoperoxidase-catalyzed protein iodination and gel electrophoresis. Of these, four polypeptides co-migrated with proteins identified as the major constituents of specific (SpG) and azurophilic (AzG) granule membranes. The most notable of these were cell surface proteins of 145,000 and 96,000 daltons that co-migrated with proteins identified as granule content proteins released from PMNs during exocytosis. Extensive washing did not remove these proteins from the cell surface. Iodination of PMNs after the release of SpG and AzG contents by calcium ionophore- induced exocytosis revealed that there was not a dramatic quantitative change in the proteins on the cell surface. Instead, there were large, quantitative increases in the relative amounts of (125)I that were incorporated into several pre-existing cell surface proteins; all of these cell surface proteins co-migrated as a set with those polypeptides identified as either granule membrane or content proteins. Although nearly all of the major polypeptides of SpG and AzG had counterparts on the cell surface of freshly isolated peritoneal exudates PMNs, there were several polypeptides that were unique to the cell surface. Thus, the PMN has at least three membrane compartments with strikingly different protein compositions.
format Text
id pubmed-2112317
institution National Center for Biotechnology Information
language English
publishDate 1983
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21123172008-05-01 Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation Brown, WJ Shannon, WA Snell, WJ J Cell Biol Articles The compositional relationship between the cell surface of rabbit polymorphonuclear leukocytes (PMNs) and the membranes of PMN cytoplasmic granules has been investigated. Heterophilic PMNs obtained from peritoneal exudates contained 13 cell surface polypeptides ranging in molecular weight from 220,000 to 12,000 daltons as determined by lactoperoxidase-catalyzed protein iodination and gel electrophoresis. Of these, four polypeptides co-migrated with proteins identified as the major constituents of specific (SpG) and azurophilic (AzG) granule membranes. The most notable of these were cell surface proteins of 145,000 and 96,000 daltons that co-migrated with proteins identified as granule content proteins released from PMNs during exocytosis. Extensive washing did not remove these proteins from the cell surface. Iodination of PMNs after the release of SpG and AzG contents by calcium ionophore- induced exocytosis revealed that there was not a dramatic quantitative change in the proteins on the cell surface. Instead, there were large, quantitative increases in the relative amounts of (125)I that were incorporated into several pre-existing cell surface proteins; all of these cell surface proteins co-migrated as a set with those polypeptides identified as either granule membrane or content proteins. Although nearly all of the major polypeptides of SpG and AzG had counterparts on the cell surface of freshly isolated peritoneal exudates PMNs, there were several polypeptides that were unique to the cell surface. Thus, the PMN has at least three membrane compartments with strikingly different protein compositions. The Rockefeller University Press 1983-04-01 /pmc/articles/PMC2112317/ /pubmed/6833389 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Brown, WJ
Shannon, WA
Snell, WJ
Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation
title Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation
title_full Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation
title_fullStr Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation
title_full_unstemmed Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation
title_short Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation
title_sort specific and azurophilic granules from rabbit polymorphonuclear leukocytes. ii. cell surface localization of granule membrane and content proteins before and after degranulation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112317/
https://www.ncbi.nlm.nih.gov/pubmed/6833389
work_keys_str_mv AT brownwj specificandazurophilicgranulesfromrabbitpolymorphonuclearleukocytesiicellsurfacelocalizationofgranulemembraneandcontentproteinsbeforeandafterdegranulation
AT shannonwa specificandazurophilicgranulesfromrabbitpolymorphonuclearleukocytesiicellsurfacelocalizationofgranulemembraneandcontentproteinsbeforeandafterdegranulation
AT snellwj specificandazurophilicgranulesfromrabbitpolymorphonuclearleukocytesiicellsurfacelocalizationofgranulemembraneandcontentproteinsbeforeandafterdegranulation