Cargando…
Morphology of isolated triads
The triad is the junctional association of transverse tubule with sarcoplasmic reticulum terminal cisternae. A procedure for the isolation of highly enriched triads from skeletal muscle has been described in the previous paper. In the present study, the structural features of isolated triads have be...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1983
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112332/ https://www.ncbi.nlm.nih.gov/pubmed/6187754 |
_version_ | 1782139932534374400 |
---|---|
collection | PubMed |
description | The triad is the junctional association of transverse tubule with sarcoplasmic reticulum terminal cisternae. A procedure for the isolation of highly enriched triads from skeletal muscle has been described in the previous paper. In the present study, the structural features of isolated triads have been examined by thin-section, negative-staining, and freeze-fracture electron microscopy. In isolated triads, key features of the structure observed in situ have been retained, including the osmiophilic "feet," junctional structures between the transverse tubule and terminal cisternae. New insight into triad structure is obtained by negative staining, which also enables visualization of feet at the junctional face of the terminal cisternae, whereas smaller surface particles, characteristic of calcium pump protein, are not visualized there. Therefore, the junctional face is different from the remainder of the sarcoplasmic reticulum membrane. Junctional feet as viewed by thin section or negative staining have similar periodicity and extend approximately 100 A from the surface of the membrane. Freeze-fracture of isolated triads reveals blocklike structures associated with the membrane of the terminal cisternae at the junctional face, interjunctional connections between the terminal cisternae and t-tubule, and intragap particles. The intragap particles can be observed to be closely associated with the t-tubule. The structure of isolated triads is susceptible to osmotic and salt perturbation, and examples are given regarding differential effects on transverse tubules and terminal cisternae. Conditions that adversely affect morphology must be considered in experimentation with triads as well as in their preparation and handling. |
format | Text |
id | pubmed-2112332 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1983 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21123322008-05-01 Morphology of isolated triads J Cell Biol Articles The triad is the junctional association of transverse tubule with sarcoplasmic reticulum terminal cisternae. A procedure for the isolation of highly enriched triads from skeletal muscle has been described in the previous paper. In the present study, the structural features of isolated triads have been examined by thin-section, negative-staining, and freeze-fracture electron microscopy. In isolated triads, key features of the structure observed in situ have been retained, including the osmiophilic "feet," junctional structures between the transverse tubule and terminal cisternae. New insight into triad structure is obtained by negative staining, which also enables visualization of feet at the junctional face of the terminal cisternae, whereas smaller surface particles, characteristic of calcium pump protein, are not visualized there. Therefore, the junctional face is different from the remainder of the sarcoplasmic reticulum membrane. Junctional feet as viewed by thin section or negative staining have similar periodicity and extend approximately 100 A from the surface of the membrane. Freeze-fracture of isolated triads reveals blocklike structures associated with the membrane of the terminal cisternae at the junctional face, interjunctional connections between the terminal cisternae and t-tubule, and intragap particles. The intragap particles can be observed to be closely associated with the t-tubule. The structure of isolated triads is susceptible to osmotic and salt perturbation, and examples are given regarding differential effects on transverse tubules and terminal cisternae. Conditions that adversely affect morphology must be considered in experimentation with triads as well as in their preparation and handling. The Rockefeller University Press 1983-04-01 /pmc/articles/PMC2112332/ /pubmed/6187754 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Morphology of isolated triads |
title | Morphology of isolated triads |
title_full | Morphology of isolated triads |
title_fullStr | Morphology of isolated triads |
title_full_unstemmed | Morphology of isolated triads |
title_short | Morphology of isolated triads |
title_sort | morphology of isolated triads |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112332/ https://www.ncbi.nlm.nih.gov/pubmed/6187754 |