Cargando…

Differences in the stress fibers between fibroblasts and epithelial cells

In the stress fibers of two types of nonmuscle cells, epithelia (PtK2, bovine lens) and fibroblasts (Gerbil fibroma, WI-38, primary human) the spacing between sites of alpha-actinin localization differs by a factor of about 1.6 as determined by indirect immunofluorescence and ultrastructural localiz...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112337/
https://www.ncbi.nlm.nih.gov/pubmed/6339529
_version_ 1782139933698293760
collection PubMed
description In the stress fibers of two types of nonmuscle cells, epithelia (PtK2, bovine lens) and fibroblasts (Gerbil fibroma, WI-38, primary human) the spacing between sites of alpha-actinin localization differs by a factor of about 1.6 as determined by indirect immunofluorescence and ultrastructural localization with peroxidase-labeled antibody. Both methods reveal striations along the stress fibers with a center-to- center spacing in the range of 0.9 mum in epithelial cells and 1.5 mum in fibroblasts. Periodic densities spaced at comparable distances are seen in PtK2 and in gerbil fibroma cells when they are treated with tannic acid and examined in the electron microscope. In such cells, densities are found not only along stress fibers but also at cell-cell junctions, attachment plaques, and foci from which stress fibers radiate. These latter three sites all stain with alpha-actinin antibody on the light and electron microscope level. Stress fibers in the two cell types also vary in the periodicity produced by indirect immunofluorescence with tropomyosin antibodies. As is the case for alpha-actinin, the tropomyosin center-to-center banding is approximately 1.6 times as long in gerbil fibroma cells (1.7 mum) as it is in PtK2 cells (1.0 mum). These results suggest that the densities seen in the electron microscope are sites of alpha-actinin localization and that the proteins in stress fibers have an arrangement similar to that in striated muscle. We propose a sarcomeric model of stress fiber structure based on light and electron microscopic findings.
format Text
id pubmed-2112337
institution National Center for Biotechnology Information
language English
publishDate 1983
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21123372008-05-01 Differences in the stress fibers between fibroblasts and epithelial cells J Cell Biol Articles In the stress fibers of two types of nonmuscle cells, epithelia (PtK2, bovine lens) and fibroblasts (Gerbil fibroma, WI-38, primary human) the spacing between sites of alpha-actinin localization differs by a factor of about 1.6 as determined by indirect immunofluorescence and ultrastructural localization with peroxidase-labeled antibody. Both methods reveal striations along the stress fibers with a center-to- center spacing in the range of 0.9 mum in epithelial cells and 1.5 mum in fibroblasts. Periodic densities spaced at comparable distances are seen in PtK2 and in gerbil fibroma cells when they are treated with tannic acid and examined in the electron microscope. In such cells, densities are found not only along stress fibers but also at cell-cell junctions, attachment plaques, and foci from which stress fibers radiate. These latter three sites all stain with alpha-actinin antibody on the light and electron microscope level. Stress fibers in the two cell types also vary in the periodicity produced by indirect immunofluorescence with tropomyosin antibodies. As is the case for alpha-actinin, the tropomyosin center-to-center banding is approximately 1.6 times as long in gerbil fibroma cells (1.7 mum) as it is in PtK2 cells (1.0 mum). These results suggest that the densities seen in the electron microscope are sites of alpha-actinin localization and that the proteins in stress fibers have an arrangement similar to that in striated muscle. We propose a sarcomeric model of stress fiber structure based on light and electron microscopic findings. The Rockefeller University Press 1983-04-01 /pmc/articles/PMC2112337/ /pubmed/6339529 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Differences in the stress fibers between fibroblasts and epithelial cells
title Differences in the stress fibers between fibroblasts and epithelial cells
title_full Differences in the stress fibers between fibroblasts and epithelial cells
title_fullStr Differences in the stress fibers between fibroblasts and epithelial cells
title_full_unstemmed Differences in the stress fibers between fibroblasts and epithelial cells
title_short Differences in the stress fibers between fibroblasts and epithelial cells
title_sort differences in the stress fibers between fibroblasts and epithelial cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112337/
https://www.ncbi.nlm.nih.gov/pubmed/6339529