Cargando…

Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin

We used cholera toxin, which binds exclusively and with a high affinity to the ganglioside GM1, as a probe to investigate the distribution of this glycolipid on the surface of mouse lymphocytes. When lymphocytes are incubated with cholera toxin (or its B subunit) and then sequentially with horse ant...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112526/
https://www.ncbi.nlm.nih.gov/pubmed/6684122
_version_ 1782139978074030080
collection PubMed
description We used cholera toxin, which binds exclusively and with a high affinity to the ganglioside GM1, as a probe to investigate the distribution of this glycolipid on the surface of mouse lymphocytes. When lymphocytes are incubated with cholera toxin (or its B subunit) and then sequentially with horse anti-toxin and FITC-swine anti-horse Ig at 37 degrees C, the cholera toxin-ganglioside GM1 complex is redistributed to a cap at one pole of the cell. The capping of cholera toxin-GM1 complexes is slower than the capping of surface-Ig complexes, requires two antibodies, and is inhibited at high toxin concentrations. Cholera toxin-GM1, like surface-Ig capping, is an energy-dependent process and is inhibited by sodium azide, low temperatures, or cytochalasin B, but is unaffected by demecolcine. An affinity-purified antibody against alpha-actinin was used to examine the distribution of this cytoskeletal component during the capping process. 88% of the cells that had a surface Ig cap displayed a co-cap of alpha-actinin, and 57% of the cells that had a cholera toxin-GM1 cap displayed a co-cap of alpha- actinin. Time course studies revealed similar kinetics of external ligand cap formation and the formation of alpha-actinin co-caps. We conclude that capping of a cell-surface glycolipid is associated with a reorganization of the underlying cytoskeleton. The implications of such an association are discussed in the context of current models of the mechanism of capping.
format Text
id pubmed-2112526
institution National Center for Biotechnology Information
language English
publishDate 1983
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21125262008-05-01 Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin J Cell Biol Articles We used cholera toxin, which binds exclusively and with a high affinity to the ganglioside GM1, as a probe to investigate the distribution of this glycolipid on the surface of mouse lymphocytes. When lymphocytes are incubated with cholera toxin (or its B subunit) and then sequentially with horse anti-toxin and FITC-swine anti-horse Ig at 37 degrees C, the cholera toxin-ganglioside GM1 complex is redistributed to a cap at one pole of the cell. The capping of cholera toxin-GM1 complexes is slower than the capping of surface-Ig complexes, requires two antibodies, and is inhibited at high toxin concentrations. Cholera toxin-GM1, like surface-Ig capping, is an energy-dependent process and is inhibited by sodium azide, low temperatures, or cytochalasin B, but is unaffected by demecolcine. An affinity-purified antibody against alpha-actinin was used to examine the distribution of this cytoskeletal component during the capping process. 88% of the cells that had a surface Ig cap displayed a co-cap of alpha-actinin, and 57% of the cells that had a cholera toxin-GM1 cap displayed a co-cap of alpha- actinin. Time course studies revealed similar kinetics of external ligand cap formation and the formation of alpha-actinin co-caps. We conclude that capping of a cell-surface glycolipid is associated with a reorganization of the underlying cytoskeleton. The implications of such an association are discussed in the context of current models of the mechanism of capping. The Rockefeller University Press 1983-08-01 /pmc/articles/PMC2112526/ /pubmed/6684122 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin
title Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin
title_full Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin
title_fullStr Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin
title_full_unstemmed Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin
title_short Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin
title_sort capping of cholera toxin-ganglioside gm1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112526/
https://www.ncbi.nlm.nih.gov/pubmed/6684122