Cargando…

Phorbol ester and mitogens stimulate human fibroblast secretions of plasmin-activatable plasminogen activator and protease nexin, an antiactivator/antiplasmin

Tumor-promoting phorbol esters have been reported to greatly increase plasminogen activator (PA) activity produced in numerous cell types. Many of these studies have employed a widely used fibrinolysis assay for PA activity that involves large-scale dilution of cell lysates or conditioned medium (CM...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112539/
https://www.ncbi.nlm.nih.gov/pubmed/6224800
Descripción
Sumario:Tumor-promoting phorbol esters have been reported to greatly increase plasminogen activator (PA) activity produced in numerous cell types. Many of these studies have employed a widely used fibrinolysis assay for PA activity that involves large-scale dilution of cell lysates or conditioned medium (CM) into buffer containing plasminogen and the plasmin substrate 125I-fibrin. This assay indicates that phorbol ester and the mitogens epidermal growth factor (EGF) and thrombin all stimulate secretion of PA activity in our human foreskin fibroblast cultures. However, these effects are not observed in a modified fibrinolysis assay employing undiluted conditioned culture medium unless the medium is first treated at pH 3, which inactivates the secreted protease inhibitor, protease nexin (PN). Moreover, a direct assay for plasminogen activator activity based on cleavage of 125I- plasminogen indicates that conditioned culture medium contains little if any active plasminogen activator either before or after treatment of the cultures with phorbol ester or EGF. Phorbol ester and mitogens do stimulate secretion of (a) an inactive PA that can be activated by plasmin and (b) PN, which inhibits both the activated form of the PA and plasmin. Secretions of the inactive PA and PN are further correlated in that release of both is stimulated most by phorbol ester, somewhat less by EGF, and least by thrombin. Significantly, these effects are not accompanied by increases in total protein secretion. We propose that fibroblasts secrete PA in an inactive form in the presence of PN to confine PA activity to an as yet undefined location or event.