Cargando…

Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance

Rat liver Golgi vesicles were isolated by differential and density gradient centrifugation. A fraction enriched in galactosyl transferase and depleted in plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal markers was found to contain an ATP-dependent H+ pump. This proton pump was n...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112588/
https://www.ncbi.nlm.nih.gov/pubmed/6225785
Descripción
Sumario:Rat liver Golgi vesicles were isolated by differential and density gradient centrifugation. A fraction enriched in galactosyl transferase and depleted in plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal markers was found to contain an ATP-dependent H+ pump. This proton pump was not inhibited by oligomycin but was sensitive to N- ethyl maleimide, which distinguishes it from the F0-F1 ATPase of mitochondria. GTP did not induce transport, unlike the lysosomal H+ pump. The pump was not dependent on the presence of potassium nor was it inhibited by vanadate, two of the characteristics of the gastric H+ ATPase. Addition of ATP generated a membrane potential that drove chloride uptake into the vesicles, suggesting that Golgi membranes contain a chloride conductance in parallel to an electrogenic proton pump. These results demonstrate that Golgi vesicles can form a pH difference and a membrane potential through the action of an electrogenic proton translocating ATPase.