Cargando…

Characterization of the 110-kdalton actin-calmodulin-, and membrane- binding protein from microvilli of intestinal epithelial cells

One of the major proteins of the chicken intestinal microvillus is a calmodulin-binding protein of 105-110 kdaltons which has been tentatively identified as the bridge linking the microvillar filament bundle laterally to the membrane. We have treated isolated, membrane- intact brush borders with ATP...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112603/
https://www.ncbi.nlm.nih.gov/pubmed/6311843
_version_ 1782139996117925888
collection PubMed
description One of the major proteins of the chicken intestinal microvillus is a calmodulin-binding protein of 105-110 kdaltons which has been tentatively identified as the bridge linking the microvillar filament bundle laterally to the membrane. We have treated isolated, membrane- intact brush borders with ATP and obtained solubilization of the 110- kdalton protein, calmodulin (CM), myosin, and lesser amounts of several other cytoskeletal proteins. Electron micrographs of ATP-extracted brush borders showed loss of the linkers between the actin filament bundle and the microvillar membrane, with "ballooning" of the membrane away from the filament bundle, particularly at the tip end. In brush borders treated with calcium and trifluoperazine to solubilize CM, precise arrangement and morphology of lateral bridges was unperturbed, but ATP treatment would no longer solubilize the 110-kdalton protein. This result suggests that associated CM is necessary for the ATP- induced solubilization of the 110-kdalton protein. A 110-kdalton protein-CM complex, with 110-kdalton protein: CM ratios of 1:1-2, was partially purified from ATP-extracts of brush borders by a combination of gel filtration and hydroxylapatite chromatography. The 110-kdalton protein-CM complex is an irregular, elongated molecule that ranged in size from 5 X 8 nm to 8 X 14 nm, with a Stokes' radius of 6.1 nm. This 110-kdalton protein-CM complex exhibited no Mg++-ATPase activity and no detectable myosin light chain kinase activity. In co-sedimentation assays, the 110-kdalton protein-CM bound to F-actin in the absence but not the presence of ATP. Both the interaction of the complex with actin and the binding of CM to the 110-kdalton protein were calcium- independent. Negative stains of F-actin and 110-kdalton protein-CM in the absence of ATP showed loosely organized aggregates of actin with the 110-kdalton protein-CM complex coating the surface of the filaments. On the basis of our data, and in agreement with previous calculations (Matsudaira, P.T., and D.R. Burgess, 1979, J. Cell Biol. 83:667-673), we suggest that the lateral bridge of the microvillus is composed of a dimer of the 110-kdalton protein with four associated calmodulins.
format Text
id pubmed-2112603
institution National Center for Biotechnology Information
language English
publishDate 1983
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21126032008-05-01 Characterization of the 110-kdalton actin-calmodulin-, and membrane- binding protein from microvilli of intestinal epithelial cells J Cell Biol Articles One of the major proteins of the chicken intestinal microvillus is a calmodulin-binding protein of 105-110 kdaltons which has been tentatively identified as the bridge linking the microvillar filament bundle laterally to the membrane. We have treated isolated, membrane- intact brush borders with ATP and obtained solubilization of the 110- kdalton protein, calmodulin (CM), myosin, and lesser amounts of several other cytoskeletal proteins. Electron micrographs of ATP-extracted brush borders showed loss of the linkers between the actin filament bundle and the microvillar membrane, with "ballooning" of the membrane away from the filament bundle, particularly at the tip end. In brush borders treated with calcium and trifluoperazine to solubilize CM, precise arrangement and morphology of lateral bridges was unperturbed, but ATP treatment would no longer solubilize the 110-kdalton protein. This result suggests that associated CM is necessary for the ATP- induced solubilization of the 110-kdalton protein. A 110-kdalton protein-CM complex, with 110-kdalton protein: CM ratios of 1:1-2, was partially purified from ATP-extracts of brush borders by a combination of gel filtration and hydroxylapatite chromatography. The 110-kdalton protein-CM complex is an irregular, elongated molecule that ranged in size from 5 X 8 nm to 8 X 14 nm, with a Stokes' radius of 6.1 nm. This 110-kdalton protein-CM complex exhibited no Mg++-ATPase activity and no detectable myosin light chain kinase activity. In co-sedimentation assays, the 110-kdalton protein-CM bound to F-actin in the absence but not the presence of ATP. Both the interaction of the complex with actin and the binding of CM to the 110-kdalton protein were calcium- independent. Negative stains of F-actin and 110-kdalton protein-CM in the absence of ATP showed loosely organized aggregates of actin with the 110-kdalton protein-CM complex coating the surface of the filaments. On the basis of our data, and in agreement with previous calculations (Matsudaira, P.T., and D.R. Burgess, 1979, J. Cell Biol. 83:667-673), we suggest that the lateral bridge of the microvillus is composed of a dimer of the 110-kdalton protein with four associated calmodulins. The Rockefeller University Press 1983-10-01 /pmc/articles/PMC2112603/ /pubmed/6311843 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Characterization of the 110-kdalton actin-calmodulin-, and membrane- binding protein from microvilli of intestinal epithelial cells
title Characterization of the 110-kdalton actin-calmodulin-, and membrane- binding protein from microvilli of intestinal epithelial cells
title_full Characterization of the 110-kdalton actin-calmodulin-, and membrane- binding protein from microvilli of intestinal epithelial cells
title_fullStr Characterization of the 110-kdalton actin-calmodulin-, and membrane- binding protein from microvilli of intestinal epithelial cells
title_full_unstemmed Characterization of the 110-kdalton actin-calmodulin-, and membrane- binding protein from microvilli of intestinal epithelial cells
title_short Characterization of the 110-kdalton actin-calmodulin-, and membrane- binding protein from microvilli of intestinal epithelial cells
title_sort characterization of the 110-kdalton actin-calmodulin-, and membrane- binding protein from microvilli of intestinal epithelial cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112603/
https://www.ncbi.nlm.nih.gov/pubmed/6311843