Cargando…

Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac

The ultrastructure of Reichert's membrane, a thick basement membrane in the parietal wall of the yolk sac, has been examined in 13-14-d pregnant rats. This membrane is composed of more or less distinct parallel layers, each one of which resembles a common basement membrane. After routine fixati...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112687/
https://www.ncbi.nlm.nih.gov/pubmed/6226670
_version_ 1782140016004169728
collection PubMed
description The ultrastructure of Reichert's membrane, a thick basement membrane in the parietal wall of the yolk sac, has been examined in 13-14-d pregnant rats. This membrane is composed of more or less distinct parallel layers, each one of which resembles a common basement membrane. After routine fixation in glutaraldehyde followed by osmium tetroxide, the layers appear to be mainly composed of 3-8-nm thick cords arranged in a three-dimensional network. Loosely scattered among the cords are unbranched, straight tubular structures with a diameter of 7-10 nm, which mainly run parallel to the surface and to one another; they are referred to as basotubules. Permanganate fixation emphasizes the presence of a thick feltwork of irregular material around basotubules. Finally, minute dot-like structures measuring 3.5 nm and referred to as double pegs are present within the meshes of the cord network. Reichert's membranes have been treated for 2-48 h at 25 degrees C with plasmin, a proteolytic enzyme known to rapidly digest laminin and fibronectin. After a 2-h treatment, most of the substance of the cords is digested away leaving a three-dimensional network of 1.5-2.0-nm thick filaments. The interpretation is that the cords are formed of a plasmin-resistant core filament and a plasmin-extractable sheath. When plasmin treatment is prolonged for 15 h or longer, the filaments are dissociated and disappear, while basotubules are maintained. Plasmin digestion also reveals that basotubules are composed of two parts: a ribbon-like helical wrapping and tubule proper. Further changes in the tubule under plasmin influence are interpreted as a dissociation into pentagonal units suggestive of the presence of the amyloid P component. After 48 h of plasmin treatment, basotubules are further disaggregated and dispersed, leaving only linearly arranged double pegs. Reichert's membranes with or without a 2- hr plasmin treatment have been immunostained by exposure to antibodies against either laminin or type IV collagen with the help of peroxidase markers. The results indicate that the sheath of the cords contains laminin antigenicity, while the core filament contains type IV collagen antigenicity. It is proposed that Reichert's membrane consists mainly of a three-dimensional network of cords composed of a type IV collagen filament enclosed within a laminin-containing sheath. Also present are basotubules--which may contain the amyloid P component--and double pegs whose nature is unknown.
format Text
id pubmed-2112687
institution National Center for Biotechnology Information
language English
publishDate 1983
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21126872008-05-01 Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac J Cell Biol Articles The ultrastructure of Reichert's membrane, a thick basement membrane in the parietal wall of the yolk sac, has been examined in 13-14-d pregnant rats. This membrane is composed of more or less distinct parallel layers, each one of which resembles a common basement membrane. After routine fixation in glutaraldehyde followed by osmium tetroxide, the layers appear to be mainly composed of 3-8-nm thick cords arranged in a three-dimensional network. Loosely scattered among the cords are unbranched, straight tubular structures with a diameter of 7-10 nm, which mainly run parallel to the surface and to one another; they are referred to as basotubules. Permanganate fixation emphasizes the presence of a thick feltwork of irregular material around basotubules. Finally, minute dot-like structures measuring 3.5 nm and referred to as double pegs are present within the meshes of the cord network. Reichert's membranes have been treated for 2-48 h at 25 degrees C with plasmin, a proteolytic enzyme known to rapidly digest laminin and fibronectin. After a 2-h treatment, most of the substance of the cords is digested away leaving a three-dimensional network of 1.5-2.0-nm thick filaments. The interpretation is that the cords are formed of a plasmin-resistant core filament and a plasmin-extractable sheath. When plasmin treatment is prolonged for 15 h or longer, the filaments are dissociated and disappear, while basotubules are maintained. Plasmin digestion also reveals that basotubules are composed of two parts: a ribbon-like helical wrapping and tubule proper. Further changes in the tubule under plasmin influence are interpreted as a dissociation into pentagonal units suggestive of the presence of the amyloid P component. After 48 h of plasmin treatment, basotubules are further disaggregated and dispersed, leaving only linearly arranged double pegs. Reichert's membranes with or without a 2- hr plasmin treatment have been immunostained by exposure to antibodies against either laminin or type IV collagen with the help of peroxidase markers. The results indicate that the sheath of the cords contains laminin antigenicity, while the core filament contains type IV collagen antigenicity. It is proposed that Reichert's membrane consists mainly of a three-dimensional network of cords composed of a type IV collagen filament enclosed within a laminin-containing sheath. Also present are basotubules--which may contain the amyloid P component--and double pegs whose nature is unknown. The Rockefeller University Press 1983-11-01 /pmc/articles/PMC2112687/ /pubmed/6226670 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac
title Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac
title_full Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac
title_fullStr Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac
title_full_unstemmed Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac
title_short Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac
title_sort ultrastructure of reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112687/
https://www.ncbi.nlm.nih.gov/pubmed/6226670