Cargando…

Microinjection of Ca++-calmodulin causes a localized depolymerization of microtubules

The microinjection of calcium-saturated calmodulin into living fibroblasts causes the rapid disruption of microtubules and stress fibers in a sharply delimited region concentric with the injection site. This effect is specific to the calcium-bearing form of calmodulin; neither calcium-free calmoduli...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112717/
https://www.ncbi.nlm.nih.gov/pubmed/6358237
Descripción
Sumario:The microinjection of calcium-saturated calmodulin into living fibroblasts causes the rapid disruption of microtubules and stress fibers in a sharply delimited region concentric with the injection site. This effect is specific to the calcium-bearing form of calmodulin; neither calcium-free calmodulin nor calcium ion at similar levels affects the cytoskeleton. If cells have previously been microinjected with calcium-free calmodulin, elevation of their intracellular calcium levels to 25 mM potentiates the disruption of microtubules throughout the cytoplasm. Approximately 400 mM free calcium is required to cause an equivalent disruption in uninjected cells. The level of calmodulin necessary to disrupt the full complement of cellular microtubules is found to be approximately in 2:1 molar ratio to tubulin dimer. These results indicate that calmodulin can be localized within the cytoplasm in a calcium-dependent manner and that it can act to regulate the calcium lability of microtubules at molar ratios that could be achieved locally within the cell. Our results are consistent with the hypothesis that calmodulin may be controlling microtubule polymerization equilibria in areas of high local concentration such as the mitotic spindle.