Cargando…
Molecular morphology of the tetrodotoxin-binding sodium channel protein from Electrophorus electricus in solubilized and reconstituted preparations
The appearance of detergent-solubilized voltage-regulated sodium channel protein was recently characterized by this laboratory. Negative- staining revealed rod-shaped particles measuring 40 X 170 A. Further studies have suggested that the actual configuration of this protein may be quite different f...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1983
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112724/ https://www.ncbi.nlm.nih.gov/pubmed/6315745 |
Sumario: | The appearance of detergent-solubilized voltage-regulated sodium channel protein was recently characterized by this laboratory. Negative- staining revealed rod-shaped particles measuring 40 X 170 A. Further studies have suggested that the actual configuration of this protein may be quite different from the rod-shaped structures. Freeze-fracture and freeze-etch images of the protein in reconstituted membranes indicated that the channel is cylindrical with a diameter of 100 A and a minimum length of 80 A. Experiments with two detergent systems (Lubrol-PX and sodium cholate) enabled us to explain the discrepancy between this structure and the rod-shaped particles visualized earlier. Negative staining in either detergent at low pH (4.5) produced rod- shaped structures. As the pH was increased, doughnut-shaped particles, consistent with the structure of the protein in freeze-etch, appeared in negative stain. The tendency of the protein to change shape under different pH conditions appears to be a peculiar property of this protein. |
---|