Cargando…
Participation of core histone "tails" in the stabilization of the chromatin solenoid
We show here that the solenoid is maintained by the combination of linker histones and the nonglobular, highly basic "tails" of the core histones, which play only a minor part in the formation of the nucleosome core (Whitlock and Simpson, 1977. J. Biol. Chem. 252:6,516-- 6,520; Lilley and...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1982
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112843/ https://www.ncbi.nlm.nih.gov/pubmed/7096439 |
Sumario: | We show here that the solenoid is maintained by the combination of linker histones and the nonglobular, highly basic "tails" of the core histones, which play only a minor part in the formation of the nucleosome core (Whitlock and Simpson, 1977. J. Biol. Chem. 252:6,516-- 6,520; Lilley and Tatchell, 1977. Nucleic Acids Res. 4:2,039--2,055; and Whitlock and Stein, 1978. J. Biol. Chem. 253:3,857--3,861). Polynucleosomes that contain core histones devoid of tails remain substantially unfolded under conditions otherwise favorable for the formation of solenoids. The tails can be replaced by extraneous basic polypeptides and in the presence of the linker histones the solenoid structure is then spontaneously recovered, as judged by a wide variety of structural criteria. The inference is that the core histone tail segments function by providing electrostatic shielding of the DNA charge and at the same time bridging adjacent nucleosomes in the solenoid. Our results carry the further implication that posttranscriptional modifications, such as acetylation of epsilon-amino groups, that reduce the positive charge of the core histone tails will tend to destabilize the higher-order structure and could thus render the DNA with which they are associated more readily available for transcription. |
---|