Cargando…

Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors

Lectins conjugated with either peroxidase or ferritin were used to detect specific monosaccharide residues on the luminal front of he fenestrated endothelium in the capillaries of murine pancreas and intestinal mucosa. The lectins tested recognize, if accessible, the following residues: alpha-N-acet...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112875/
https://www.ncbi.nlm.nih.gov/pubmed/7107706
_version_ 1782140057090523136
collection PubMed
description Lectins conjugated with either peroxidase or ferritin were used to detect specific monosaccharide residues on the luminal front of he fenestrated endothelium in the capillaries of murine pancreas and intestinal mucosa. The lectins tested recognize, if accessible, the following residues: alpha-N-acetylgalactosaminyl (soybean lectin), beta- D-galactosyl (peanut agglutinin [PA] and Ricinus communis agglutinin- 120 [RCA]), beta-N-acetylglucosaminyl and sialyl residues (wheat germ agglutinin [WGA]), alpha-L-fucosyl (lotus tetragonolobus lectin), and alpha-D-glucosyl and beta-D-mannosyl (concanavalin A [ConA]). Thi labeled lectins were introduced by perfusion in situ after thoroughly flushing with phosphate-buffered saline the microvascular beds under investigation. Specimens were fixed by perfusion, and subsequently processed for peroxidase detection and electron microscopy. Control experiments included perfusion with: (a) unlabeled lectin before lectin conjugate; (b) labeled lectin together with the cognate hapten sugar, and (c) horseradish peroxidase or ferritin alone. Binding sites were found to be relatively homogeneously distributed on the plasmalemma proper, except for Lotus tetragonolobus lectin and Con A, which frequently bound in patches. Plasmalemmal vesicles, transendothelial channels, and their associated diaphragms were particularly rich in residues recognized by RCA and PA (beta-D-galactosyl residues) and by WGA (beta-N-acetylglucosaminyl residues). Receptors for all lectins tested appeared to be absent or considerably less concentrated on fenestral diaphragms. The results reported here extend and complement previous findings on the existence of microdomains generated by the preferential distribution of chemically different anionic sites (Simionescu et al., 1981, J. Cell Biol., 9:605-613 and 614-621).
format Text
id pubmed-2112875
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21128752008-05-01 Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors J Cell Biol Articles Lectins conjugated with either peroxidase or ferritin were used to detect specific monosaccharide residues on the luminal front of he fenestrated endothelium in the capillaries of murine pancreas and intestinal mucosa. The lectins tested recognize, if accessible, the following residues: alpha-N-acetylgalactosaminyl (soybean lectin), beta- D-galactosyl (peanut agglutinin [PA] and Ricinus communis agglutinin- 120 [RCA]), beta-N-acetylglucosaminyl and sialyl residues (wheat germ agglutinin [WGA]), alpha-L-fucosyl (lotus tetragonolobus lectin), and alpha-D-glucosyl and beta-D-mannosyl (concanavalin A [ConA]). Thi labeled lectins were introduced by perfusion in situ after thoroughly flushing with phosphate-buffered saline the microvascular beds under investigation. Specimens were fixed by perfusion, and subsequently processed for peroxidase detection and electron microscopy. Control experiments included perfusion with: (a) unlabeled lectin before lectin conjugate; (b) labeled lectin together with the cognate hapten sugar, and (c) horseradish peroxidase or ferritin alone. Binding sites were found to be relatively homogeneously distributed on the plasmalemma proper, except for Lotus tetragonolobus lectin and Con A, which frequently bound in patches. Plasmalemmal vesicles, transendothelial channels, and their associated diaphragms were particularly rich in residues recognized by RCA and PA (beta-D-galactosyl residues) and by WGA (beta-N-acetylglucosaminyl residues). Receptors for all lectins tested appeared to be absent or considerably less concentrated on fenestral diaphragms. The results reported here extend and complement previous findings on the existence of microdomains generated by the preferential distribution of chemically different anionic sites (Simionescu et al., 1981, J. Cell Biol., 9:605-613 and 614-621). The Rockefeller University Press 1982-08-01 /pmc/articles/PMC2112875/ /pubmed/7107706 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors
title Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors
title_full Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors
title_fullStr Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors
title_full_unstemmed Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors
title_short Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors
title_sort differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112875/
https://www.ncbi.nlm.nih.gov/pubmed/7107706