Cargando…
Structure and function of rat liver polysome populations. II. Characterization of polyadenylate-containing mRNA associated with subpopulations of membrane-bound particles
Poly(A)+RNA fractions prepared from free and loosely and tightly membrane-bound polysome populations (poly(A)+RNAfree, poly(A)+RNAloose, and poly(A)+RNAtight) were used to drive cDNA in homologous and heterologous hybridization reactions. A large fraction by mass of sequences was shared among the th...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1982
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112880/ https://www.ncbi.nlm.nih.gov/pubmed/7107700 |
Sumario: | Poly(A)+RNA fractions prepared from free and loosely and tightly membrane-bound polysome populations (poly(A)+RNAfree, poly(A)+RNAloose, and poly(A)+RNAtight) were used to drive cDNA in homologous and heterologous hybridization reactions. A large fraction by mass of sequences was shared among the three poly(A)+RNA populations, but shared sequences exhibited distinct frequency distributions within the different populations. 13-15 in vitro translation products of poly(A)+RNAfree and poly(A)+RNAloose detected by gel electrophoresis were shared. Most of these were produced in different relative quantities by the two RNA populations. Five or six higher mol wt polypeptides were produced by poly(A)+RNAloose that were not detected as products of either poly(A)+free or poly(A)+RNAtight. We suggest that loosely bound polysomes may not be artifactually derived as reflected in their quantitatively distinct poly(A)+RNA population. Two tightly membrane-bound RNP fractions were prepared from rat liver on the basis of their release from or retention on purified rough microsomes or a crude membrane fraction after in vitro disaggregation of polysomes with high-salt and puromycin. Homologous and heterologous hybridizations involving their poly(A)+RNA fractions revealed that a large portion by mass of sequences was shared but that these sequences exhibited distinct frequency distributions in the two fractions. The RNA fractions produced exhibited distinct frequency distributions in the two fractions. The RNA fractions produced an identical set of in vitro translation products but individual polypeptides were produced in different relative quantities. This indicates that the two RNP fractions do not arise by any random artifactual process and suggests that they may represent functionally distinct populations. |
---|