Cargando…

Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro

In the preceding papers, we demonstrated that the endogenous phosphorylation of a 29,000-dalton protein is stimulated in response to secretagogue application to intact cells from the rat exocrine pancreas and parotid and dephosphorylated upon termination of secretagogue action. One- and two-dimensio...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112928/
https://www.ncbi.nlm.nih.gov/pubmed/6296162
_version_ 1782140069598986240
collection PubMed
description In the preceding papers, we demonstrated that the endogenous phosphorylation of a 29,000-dalton protein is stimulated in response to secretagogue application to intact cells from the rat exocrine pancreas and parotid and dephosphorylated upon termination of secretagogue action. One- and two-dimensional gel analysis of 32Pi-labeled pancreatic and parotid lobules as well as their respective subcellular fractions revealed that the same protein was covalently modified in both tissues and was localized to the ribosomal fraction. To identify the intracellular second messengers which may mediate or modulate the phosphorylation of the 29,000-dalton protein in intact cells, the effects of Ca2+, cAMP, and cGMP on the endogenous phosphorylation of this protein were assessed in subcellular fractions from the rat pancreas and parotid. Our results demonstrate that the phosphorylation of the 29,000-dalton polypeptide may be regulated by both Ca2+ and cAMP in the pancreas and in the parotid. No cGMP-dependent protein phosphorylation was found in either tissue. As in the in situ phosphorylation studies, the Ca2+- and cAMP-dependent phosphorylation of this same protein was localized to the ribosomal fraction. The cAMP- dependent protein kinase activity was found primarily in the postmicrosomal supernatant in contrast to the Ca2+-dependent protein kinase that appeared to be tightly associated with the substrate in addition to being present in the postmicrosomal supernatant. The data suggest that, in cells from the exocrine pancreas and parotid, secretagogues may regulate the phosphorylation of the 29,000-dalton protein through Ca2+ and/or cAMP.
format Text
id pubmed-2112928
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21129282008-05-01 Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro J Cell Biol Articles In the preceding papers, we demonstrated that the endogenous phosphorylation of a 29,000-dalton protein is stimulated in response to secretagogue application to intact cells from the rat exocrine pancreas and parotid and dephosphorylated upon termination of secretagogue action. One- and two-dimensional gel analysis of 32Pi-labeled pancreatic and parotid lobules as well as their respective subcellular fractions revealed that the same protein was covalently modified in both tissues and was localized to the ribosomal fraction. To identify the intracellular second messengers which may mediate or modulate the phosphorylation of the 29,000-dalton protein in intact cells, the effects of Ca2+, cAMP, and cGMP on the endogenous phosphorylation of this protein were assessed in subcellular fractions from the rat pancreas and parotid. Our results demonstrate that the phosphorylation of the 29,000-dalton polypeptide may be regulated by both Ca2+ and cAMP in the pancreas and in the parotid. No cGMP-dependent protein phosphorylation was found in either tissue. As in the in situ phosphorylation studies, the Ca2+- and cAMP-dependent phosphorylation of this same protein was localized to the ribosomal fraction. The cAMP- dependent protein kinase activity was found primarily in the postmicrosomal supernatant in contrast to the Ca2+-dependent protein kinase that appeared to be tightly associated with the substrate in addition to being present in the postmicrosomal supernatant. The data suggest that, in cells from the exocrine pancreas and parotid, secretagogues may regulate the phosphorylation of the 29,000-dalton protein through Ca2+ and/or cAMP. The Rockefeller University Press 1982-12-01 /pmc/articles/PMC2112928/ /pubmed/6296162 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro
title Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro
title_full Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro
title_fullStr Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro
title_full_unstemmed Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro
title_short Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro
title_sort hormone-induced protein phosphorylation. iii. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both ca2+ and camp in vitro
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112928/
https://www.ncbi.nlm.nih.gov/pubmed/6296162