Cargando…

Immunocytochemical demonstration of alpha-tubulin modification during axonal maturation in the cerebellar cortex

Previous light microscopic immunocytochemical studies using two monoclonal antibodies that recognise alpha-tubulin (YOL/34 and YL1/2) but differ in their isotypic specificity have shown that the unmyelinated parallel fiber axons in the cerebellar cortex are labeled with only one of the antibodies (Y...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113003/
https://www.ncbi.nlm.nih.gov/pubmed/6707095
Descripción
Sumario:Previous light microscopic immunocytochemical studies using two monoclonal antibodies that recognise alpha-tubulin (YOL/34 and YL1/2) but differ in their isotypic specificity have shown that the unmyelinated parallel fiber axons in the cerebellar cortex are labeled with only one of the antibodies (YOL/34). We now show that at 10 d postnatally the parallel fibers are labeled with both antibodies, and that during development YL1/2 (but not YOL/34) immunoreactivity disappears progressively from parallel fibers in the lower regions of the molecular layer upwards towards the external germinal layer. By approximately 28 d postnatally, the differential staining pattern of parallel fibers by the antibodies is established throughout the molecular layer. The time course, light microscopic, and ultrastructural staining distribution corresponds to a progressive change in alpha-tubulin immunoreactivity as the parallel fibers form synaptic contacts. This modification of alpha-tubulin (which was not observed in Purkinje cell dendrites or Bergmann glia) may be related to the formation of a basic isotype of alpha-tubulin within parallel fiber axons at maturation.