Cargando…

The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells

Marginal bands (MBs) of microtubules are believed to function during morphogenesis of nonmammalian vertebrate erythrocytes, but there has been little evidence favoring a continuing role in mature cells. To test MB function, we prepared dogfish erythrocytes with and without MBs at the same temperatur...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113052/
https://www.ncbi.nlm.nih.gov/pubmed/6144686
_version_ 1782140094779490304
collection PubMed
description Marginal bands (MBs) of microtubules are believed to function during morphogenesis of nonmammalian vertebrate erythrocytes, but there has been little evidence favoring a continuing role in mature cells. To test MB function, we prepared dogfish erythrocytes with and without MBs at the same temperature by (a) stabilization of the normally cold- labile MB at 0 degree C by taxol, and (b) inhibition of MB reassembly at room temperature by nocodazole or colchicine. We then compared the responses of these cells to mechanical stress by fluxing them through capillary tubes. Before fluxing , cells with or without MBs had normal flattened elliptical shape. After fluxing , deformation was consistently observed in a much greater percentage of cells lacking MBs. The difference in percent deformation between the two cell types was highly significant. That the MB is an effector of cell shape was further documented in studies of the formation of singly or doubly pointed dogfish erythrocytes that appear during long-term incubation of normal cells at room temperature. On-slide perfusion experiments revealed that the pointed cells contain MBs of corresponding pointed morphology. Incubation of cells with and without MBs showed that they become pointed only when they contain MBs, indicating that the MB acts as a flexible frame which can deform and support the cell surface from within. To test this idea further, cells with and without MBs were exposed to hyperosmotic conditions. Many of the cells without MBs collapsed and shriveled , whereas those with MBs did not. The results support the view that the MB has a continuing function in mature erythrocytes, resisting deformation and/or rapidly returning deformed cells to an efficient equilibrium shape in the circulation.
format Text
id pubmed-2113052
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21130522008-05-01 The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells J Cell Biol Articles Marginal bands (MBs) of microtubules are believed to function during morphogenesis of nonmammalian vertebrate erythrocytes, but there has been little evidence favoring a continuing role in mature cells. To test MB function, we prepared dogfish erythrocytes with and without MBs at the same temperature by (a) stabilization of the normally cold- labile MB at 0 degree C by taxol, and (b) inhibition of MB reassembly at room temperature by nocodazole or colchicine. We then compared the responses of these cells to mechanical stress by fluxing them through capillary tubes. Before fluxing , cells with or without MBs had normal flattened elliptical shape. After fluxing , deformation was consistently observed in a much greater percentage of cells lacking MBs. The difference in percent deformation between the two cell types was highly significant. That the MB is an effector of cell shape was further documented in studies of the formation of singly or doubly pointed dogfish erythrocytes that appear during long-term incubation of normal cells at room temperature. On-slide perfusion experiments revealed that the pointed cells contain MBs of corresponding pointed morphology. Incubation of cells with and without MBs showed that they become pointed only when they contain MBs, indicating that the MB acts as a flexible frame which can deform and support the cell surface from within. To test this idea further, cells with and without MBs were exposed to hyperosmotic conditions. Many of the cells without MBs collapsed and shriveled , whereas those with MBs did not. The results support the view that the MB has a continuing function in mature erythrocytes, resisting deformation and/or rapidly returning deformed cells to an efficient equilibrium shape in the circulation. The Rockefeller University Press 1984-06-01 /pmc/articles/PMC2113052/ /pubmed/6144686 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells
title The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells
title_full The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells
title_fullStr The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells
title_full_unstemmed The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells
title_short The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells
title_sort cytoskeletal system of nucleated erythrocytes. iii. marginal band function in mature cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113052/
https://www.ncbi.nlm.nih.gov/pubmed/6144686