Cargando…
Generation of flagella by cultured mouse spermatids
During the short-term culturing of mouse spermatogenic cells, flagella were generated by round spermatids previously lacking tails. Unseparated germ cells were obtained by enzymatic treatments and round spermatids (greater than 90% pure) were purified by unit gravity sedimentation. As determined by...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1984
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113102/ https://www.ncbi.nlm.nih.gov/pubmed/6363426 |
_version_ | 1782140106855940096 |
---|---|
collection | PubMed |
description | During the short-term culturing of mouse spermatogenic cells, flagella were generated by round spermatids previously lacking tails. Unseparated germ cells were obtained by enzymatic treatments and round spermatids (greater than 90% pure) were purified by unit gravity sedimentation. As determined by Nomarski or phase-contrast microscopy, no cells had flagella immediately after isolation; flagella were first clearly detected after 6 1/2 h of culture in Eagle's minimal essential medium containing 10% fetal bovine serum and 6 mM lactate. After 24 h, approximately 20% of round spermatids had formed flagella. Multinucleated round spermatids often formed multiple flagella, the number never exceeding the number of nuclei per symplast. Round spermatids were the only spermatogenic cells capable of tail formation. Flagella elongation was blocked by 1 microM demecolcine, an inhibitor of tubulin polymerization. Indirect immunofluorescence localized tubulin in the flagella. As seen by scanning electron microscopy, flagella developed as early as 2 h after culture and continued to elongate over the next 20 h, reaching lengths of at least 19 micron. Transmission electron microscopy demonstrated that flagella formed in culture resembled flagella from Golgi-phase round spermatids in situ; the flagella consisted of "9+2" axonemes lacking other accessory structures such as outer dense fibers and the fibrous sheath. As determined by acridine orange staining of the developing acrosomes, all spermatids that formed flagella in culture were Golgi-phase spermatids. By these criteria, the structures are indeed true flagella, corresponding in appearance to what others have described for early mammalian spermatid flagella in situ. We believe this is the first substantiated report of limited in vitro differentiation by isolated mammalian spermatids. |
format | Text |
id | pubmed-2113102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1984 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21131022008-05-01 Generation of flagella by cultured mouse spermatids J Cell Biol Articles During the short-term culturing of mouse spermatogenic cells, flagella were generated by round spermatids previously lacking tails. Unseparated germ cells were obtained by enzymatic treatments and round spermatids (greater than 90% pure) were purified by unit gravity sedimentation. As determined by Nomarski or phase-contrast microscopy, no cells had flagella immediately after isolation; flagella were first clearly detected after 6 1/2 h of culture in Eagle's minimal essential medium containing 10% fetal bovine serum and 6 mM lactate. After 24 h, approximately 20% of round spermatids had formed flagella. Multinucleated round spermatids often formed multiple flagella, the number never exceeding the number of nuclei per symplast. Round spermatids were the only spermatogenic cells capable of tail formation. Flagella elongation was blocked by 1 microM demecolcine, an inhibitor of tubulin polymerization. Indirect immunofluorescence localized tubulin in the flagella. As seen by scanning electron microscopy, flagella developed as early as 2 h after culture and continued to elongate over the next 20 h, reaching lengths of at least 19 micron. Transmission electron microscopy demonstrated that flagella formed in culture resembled flagella from Golgi-phase round spermatids in situ; the flagella consisted of "9+2" axonemes lacking other accessory structures such as outer dense fibers and the fibrous sheath. As determined by acridine orange staining of the developing acrosomes, all spermatids that formed flagella in culture were Golgi-phase spermatids. By these criteria, the structures are indeed true flagella, corresponding in appearance to what others have described for early mammalian spermatid flagella in situ. We believe this is the first substantiated report of limited in vitro differentiation by isolated mammalian spermatids. The Rockefeller University Press 1984-02-01 /pmc/articles/PMC2113102/ /pubmed/6363426 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Generation of flagella by cultured mouse spermatids |
title | Generation of flagella by cultured mouse spermatids |
title_full | Generation of flagella by cultured mouse spermatids |
title_fullStr | Generation of flagella by cultured mouse spermatids |
title_full_unstemmed | Generation of flagella by cultured mouse spermatids |
title_short | Generation of flagella by cultured mouse spermatids |
title_sort | generation of flagella by cultured mouse spermatids |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113102/ https://www.ncbi.nlm.nih.gov/pubmed/6363426 |