Cargando…
A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro
Specific mitogens stimulate the proliferation and repress the differentiation of mouse myoblasts (MM14). When mitogens are depleted, MM14 cells cease proliferation, commit to terminal differentiation, and become refractory to growth stimulation. The behavior of mitogen receptors during the transitio...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1984
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113105/ https://www.ncbi.nlm.nih.gov/pubmed/6319433 |
_version_ | 1782140107549048832 |
---|---|
collection | PubMed |
description | Specific mitogens stimulate the proliferation and repress the differentiation of mouse myoblasts (MM14). When mitogens are depleted, MM14 cells cease proliferation, commit to terminal differentiation, and become refractory to growth stimulation. The behavior of mitogen receptors during the transition from a proliferative to a permanently postmitotic state was examined using the epidermal growth factor receptor (EGFR) as a model system. Whereas proliferating myoblasts bound substantial amounts of EGF, their binding capacity declined rapidly upon exposure to low-mitogen medium. The decline became irreversible when a cell differentiated. Within 24 h, less than 5% of the original EGF binding capacity remained. Since the ability to internalize and degrade bound EGF was unaffected, the change presumably reflected a decrease in EGFR availability. Several observations indicated that loss of EGFR following mitogen removal is related to differentiation rather than the result of starvation or cell-cycle arrest. First, the decline is correlated with the absence of a single mitogen (fibroblast growth factor) and is independent of serum concentrations. Second, myoblasts that are either cycling through G1 or arrested at G0, but prevented from differentiating, all bind large amounts of EGF. These findings suggest that specific reduction in mitogen receptors could be part of a mechanism whereby terminally differentiating cells become refractory to mitogenic stimulation. |
format | Text |
id | pubmed-2113105 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1984 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21131052008-05-01 A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro J Cell Biol Articles Specific mitogens stimulate the proliferation and repress the differentiation of mouse myoblasts (MM14). When mitogens are depleted, MM14 cells cease proliferation, commit to terminal differentiation, and become refractory to growth stimulation. The behavior of mitogen receptors during the transition from a proliferative to a permanently postmitotic state was examined using the epidermal growth factor receptor (EGFR) as a model system. Whereas proliferating myoblasts bound substantial amounts of EGF, their binding capacity declined rapidly upon exposure to low-mitogen medium. The decline became irreversible when a cell differentiated. Within 24 h, less than 5% of the original EGF binding capacity remained. Since the ability to internalize and degrade bound EGF was unaffected, the change presumably reflected a decrease in EGFR availability. Several observations indicated that loss of EGFR following mitogen removal is related to differentiation rather than the result of starvation or cell-cycle arrest. First, the decline is correlated with the absence of a single mitogen (fibroblast growth factor) and is independent of serum concentrations. Second, myoblasts that are either cycling through G1 or arrested at G0, but prevented from differentiating, all bind large amounts of EGF. These findings suggest that specific reduction in mitogen receptors could be part of a mechanism whereby terminally differentiating cells become refractory to mitogenic stimulation. The Rockefeller University Press 1984-02-01 /pmc/articles/PMC2113105/ /pubmed/6319433 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro |
title | A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro |
title_full | A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro |
title_fullStr | A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro |
title_full_unstemmed | A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro |
title_short | A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro |
title_sort | rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113105/ https://www.ncbi.nlm.nih.gov/pubmed/6319433 |