Cargando…
Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments
Inhibition of protein synthesis in Vero cells was measured at different periods of time after treatment with diphtheria toxin and the related plant toxin modeccin. Diphtheria toxin acted much more rapidly than modeccin. Cells were protected against both toxins with antiserum as well as with agents l...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1984
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113145/ https://www.ncbi.nlm.nih.gov/pubmed/6699094 |
_version_ | 1782140117079556096 |
---|---|
collection | PubMed |
description | Inhibition of protein synthesis in Vero cells was measured at different periods of time after treatment with diphtheria toxin and the related plant toxin modeccin. Diphtheria toxin acted much more rapidly than modeccin. Cells were protected against both toxins with antiserum as well as with agents like NH4Cl, procaine, and the ionophores monensin, FCCP, and CCCP, which increase the pH of intracellular vesicles. Antiserum, which is supposed to inactivate toxin only at the cell surface, protected only when it was added within a short period of time after modeccin. Compounds that increase the pH of intracellular vesicles, protected even when added after 2 h, indicating that modeccin remains inside vesicles for a considerable period of time before it enters the cytosol. After addition of diphtheria toxin to the cells, compounds that increase the pH of intracellular vesicles protected only approximately to the same extent as antitoxin. This indicates that after endocytosis diphtheria toxin rapidly enters the cytosol. At 20 degrees C, the cells were more strongly protected against modeccin than against diphtheria toxin. The residual toxic effect of diphtheria toxin at 20 degrees C could be blocked with NH4Cl whereas this was not the case with modeccin. This indicates that at 20 degrees C the uptake of diphtheria toxin occurs by the normal route, whereas the uptake of modeccin occurs by a less efficient route than that dominating at 37 degrees C. The results indicate that after endocytosis diphtheria toxin rapidly enters the cytosol from early endosomes with low pH (receptosomes). Modeccin enters the cytosol much more slowly, possibly after fusion of the endocytic vesicles with another compartment. |
format | Text |
id | pubmed-2113145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1984 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21131452008-05-01 Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments J Cell Biol Articles Inhibition of protein synthesis in Vero cells was measured at different periods of time after treatment with diphtheria toxin and the related plant toxin modeccin. Diphtheria toxin acted much more rapidly than modeccin. Cells were protected against both toxins with antiserum as well as with agents like NH4Cl, procaine, and the ionophores monensin, FCCP, and CCCP, which increase the pH of intracellular vesicles. Antiserum, which is supposed to inactivate toxin only at the cell surface, protected only when it was added within a short period of time after modeccin. Compounds that increase the pH of intracellular vesicles, protected even when added after 2 h, indicating that modeccin remains inside vesicles for a considerable period of time before it enters the cytosol. After addition of diphtheria toxin to the cells, compounds that increase the pH of intracellular vesicles protected only approximately to the same extent as antitoxin. This indicates that after endocytosis diphtheria toxin rapidly enters the cytosol. At 20 degrees C, the cells were more strongly protected against modeccin than against diphtheria toxin. The residual toxic effect of diphtheria toxin at 20 degrees C could be blocked with NH4Cl whereas this was not the case with modeccin. This indicates that at 20 degrees C the uptake of diphtheria toxin occurs by the normal route, whereas the uptake of modeccin occurs by a less efficient route than that dominating at 37 degrees C. The results indicate that after endocytosis diphtheria toxin rapidly enters the cytosol from early endosomes with low pH (receptosomes). Modeccin enters the cytosol much more slowly, possibly after fusion of the endocytic vesicles with another compartment. The Rockefeller University Press 1984-03-01 /pmc/articles/PMC2113145/ /pubmed/6699094 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments |
title | Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments |
title_full | Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments |
title_fullStr | Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments |
title_full_unstemmed | Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments |
title_short | Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments |
title_sort | evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113145/ https://www.ncbi.nlm.nih.gov/pubmed/6699094 |