Cargando…

Collagenase is a major gene product of induced rabbit synovial fibroblasts

We have investigated the effects of the tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA), on rabbit synovial fibroblasts, and found that this agent induced a major switch in gene expression in these cells that was marked by the specific induction of the neutral proteinase,...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113195/
https://www.ncbi.nlm.nih.gov/pubmed/6327717
_version_ 1782140128800538624
collection PubMed
description We have investigated the effects of the tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA), on rabbit synovial fibroblasts, and found that this agent induced a major switch in gene expression in these cells that was marked by the specific induction of the neutral proteinase, collagenase, and was always accompanied by alterations in cell morphology. Procollagenase synthesis and secretion was first observed 6-12 h after the addition of TPA. The rate of collagenase production (1-5 U, or approximately 0.2-1 micrograms secreted procollagenase protein per 10(5) cells per 24 h) depended on the TPA concentration (1-400 ng/ml) and time of exposure (1-72 h). Procollagenase was the most prominent protein visible by direct silver staining or by autoradiography after SDS PAGE of [35S]methionine- labeled proteins. The two procollagenase bands of Mr 53,000 and 57,000, which migrated as a family of spots on two-dimensional gels and were immunoprecipitated by antibodies to purified rabbit collagenase, accounted for 23% of the newly synthesized, secreted protein in TPA- treated cells. Cell-free translation of mRNA from TPA-treated cells in rabbit reticulocyte lysate produced a single band of immunoprecipitable preprocollagenase (Mr 55,000) as a major product (5% of total) that migrated as a single spot on two-dimensional gels. Secreted procollagenase, preprocollagenase , and active collagenase (purified to homogeneity; specific activity 1.2 X 10(4) U/mg protein) had related peptide maps. Two other major secreted proteins, a neutral metalloproteinase of Mr 51,000 and a polypeptide of Mr 47,000, were also induced by TPA. In contrast to the induction of these four polypeptides, TPA decreased synthesis and secretion of a number of proteins, including collagen and fibronectin. Thus, collagenase is a convenient marker for major alterations in the pattern of protein synthesis and secretion by rabbit synovial fibroblasts treated with TPA.
format Text
id pubmed-2113195
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21131952008-05-01 Collagenase is a major gene product of induced rabbit synovial fibroblasts J Cell Biol Articles We have investigated the effects of the tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA), on rabbit synovial fibroblasts, and found that this agent induced a major switch in gene expression in these cells that was marked by the specific induction of the neutral proteinase, collagenase, and was always accompanied by alterations in cell morphology. Procollagenase synthesis and secretion was first observed 6-12 h after the addition of TPA. The rate of collagenase production (1-5 U, or approximately 0.2-1 micrograms secreted procollagenase protein per 10(5) cells per 24 h) depended on the TPA concentration (1-400 ng/ml) and time of exposure (1-72 h). Procollagenase was the most prominent protein visible by direct silver staining or by autoradiography after SDS PAGE of [35S]methionine- labeled proteins. The two procollagenase bands of Mr 53,000 and 57,000, which migrated as a family of spots on two-dimensional gels and were immunoprecipitated by antibodies to purified rabbit collagenase, accounted for 23% of the newly synthesized, secreted protein in TPA- treated cells. Cell-free translation of mRNA from TPA-treated cells in rabbit reticulocyte lysate produced a single band of immunoprecipitable preprocollagenase (Mr 55,000) as a major product (5% of total) that migrated as a single spot on two-dimensional gels. Secreted procollagenase, preprocollagenase , and active collagenase (purified to homogeneity; specific activity 1.2 X 10(4) U/mg protein) had related peptide maps. Two other major secreted proteins, a neutral metalloproteinase of Mr 51,000 and a polypeptide of Mr 47,000, were also induced by TPA. In contrast to the induction of these four polypeptides, TPA decreased synthesis and secretion of a number of proteins, including collagen and fibronectin. Thus, collagenase is a convenient marker for major alterations in the pattern of protein synthesis and secretion by rabbit synovial fibroblasts treated with TPA. The Rockefeller University Press 1984-05-01 /pmc/articles/PMC2113195/ /pubmed/6327717 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Collagenase is a major gene product of induced rabbit synovial fibroblasts
title Collagenase is a major gene product of induced rabbit synovial fibroblasts
title_full Collagenase is a major gene product of induced rabbit synovial fibroblasts
title_fullStr Collagenase is a major gene product of induced rabbit synovial fibroblasts
title_full_unstemmed Collagenase is a major gene product of induced rabbit synovial fibroblasts
title_short Collagenase is a major gene product of induced rabbit synovial fibroblasts
title_sort collagenase is a major gene product of induced rabbit synovial fibroblasts
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113195/
https://www.ncbi.nlm.nih.gov/pubmed/6327717