Cargando…

Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes

Sequestration of the inert cytosolic marker [14C]sucrose by sedimentable organelles was measured in isolated rat hepatocytes made transiently permeable to sucrose by means of electropermeabilization. Lysosomal integrity, protein degradation, autophagic sequestration, and other cellular functions wer...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113269/
https://www.ncbi.nlm.nih.gov/pubmed/6746735
_version_ 1782140145872404480
collection PubMed
description Sequestration of the inert cytosolic marker [14C]sucrose by sedimentable organelles was measured in isolated rat hepatocytes made transiently permeable to sucrose by means of electropermeabilization. Lysosomal integrity, protein degradation, autophagic sequestration, and other cellular functions were not significantly impaired by the electric treatment. Hepatocytes sequestered sucrose at an initial rate of approximately 10%/h, which is threefold higher than the estimated rate of autophagic-lysosomal protein degradation. Almost one-third would appear to represent mitochondrial fluid uptake; the rest was nearly completely and specifically inhibited by 3-methyladenine (3MA) and can be regarded as autophagic sequestration. A complete amino acid mixture was somewhat less inhibitory than 3MA, and partially antagonized the effect of the latter. This paradoxical effect, taken together with the high sequestration rate, may suggest heterogeneity as well as selectivity in autophagic sequestration. There was no detectable recycling of sequestered [14C]sucrose between organelles and cytosol. Studies of individual amino acids revealed histidine as the most effective sequestration inhibitor. Leucine may have a regulatory function, as indicated by its unique additive/synergistic effect, and a combination of Leu + His was as effective as the complete amino acid mixture. Asparagine inhibited sequestration only 20%, i.e., its very strong effect on overall (long-lived) protein degradation must partially be due to post-sequestrational inhibition. The lysosomal (amine-sensitive) degradation of short-lived protein was incompletely inhibited by 3MA, indicating a contribution from nonautophagic processes like crinophagy and endocytic membrane influx. The ability of an amino acid mixture to specifically antagonize the inhibition of short-lived protein degradation by AsN + GIN (but not by 3MA) may suggest complex amino acid interactions at the level of fusion between lysosomes and other vesicles in addition to the equally complex interactions at the level of autophagic sequestration.
format Text
id pubmed-2113269
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21132692008-05-01 Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes J Cell Biol Articles Sequestration of the inert cytosolic marker [14C]sucrose by sedimentable organelles was measured in isolated rat hepatocytes made transiently permeable to sucrose by means of electropermeabilization. Lysosomal integrity, protein degradation, autophagic sequestration, and other cellular functions were not significantly impaired by the electric treatment. Hepatocytes sequestered sucrose at an initial rate of approximately 10%/h, which is threefold higher than the estimated rate of autophagic-lysosomal protein degradation. Almost one-third would appear to represent mitochondrial fluid uptake; the rest was nearly completely and specifically inhibited by 3-methyladenine (3MA) and can be regarded as autophagic sequestration. A complete amino acid mixture was somewhat less inhibitory than 3MA, and partially antagonized the effect of the latter. This paradoxical effect, taken together with the high sequestration rate, may suggest heterogeneity as well as selectivity in autophagic sequestration. There was no detectable recycling of sequestered [14C]sucrose between organelles and cytosol. Studies of individual amino acids revealed histidine as the most effective sequestration inhibitor. Leucine may have a regulatory function, as indicated by its unique additive/synergistic effect, and a combination of Leu + His was as effective as the complete amino acid mixture. Asparagine inhibited sequestration only 20%, i.e., its very strong effect on overall (long-lived) protein degradation must partially be due to post-sequestrational inhibition. The lysosomal (amine-sensitive) degradation of short-lived protein was incompletely inhibited by 3MA, indicating a contribution from nonautophagic processes like crinophagy and endocytic membrane influx. The ability of an amino acid mixture to specifically antagonize the inhibition of short-lived protein degradation by AsN + GIN (but not by 3MA) may suggest complex amino acid interactions at the level of fusion between lysosomes and other vesicles in addition to the equally complex interactions at the level of autophagic sequestration. The Rockefeller University Press 1984-08-01 /pmc/articles/PMC2113269/ /pubmed/6746735 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes
title Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes
title_full Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes
title_fullStr Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes
title_full_unstemmed Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes
title_short Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes
title_sort amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113269/
https://www.ncbi.nlm.nih.gov/pubmed/6746735