Cargando…

Fetal bovine bone cells synthesize bone-specific matrix proteins

We isolated cells from both calvaria and the outer cortices of long bones from 3- to 5-mo bovine fetuses. The cells were identified as functional osteoblasts by indirect immunofluorescence using antibodies against three bone-specific, noncollagenous matrix proteins (osteonectin, the bone proteoglyca...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113278/
https://www.ncbi.nlm.nih.gov/pubmed/6086672
_version_ 1782140147975847936
collection PubMed
description We isolated cells from both calvaria and the outer cortices of long bones from 3- to 5-mo bovine fetuses. The cells were identified as functional osteoblasts by indirect immunofluorescence using antibodies against three bone-specific, noncollagenous matrix proteins (osteonectin, the bone proteoglycan, and the bone sialoprotein) and against type 1 collagen. In separate experiments, confluent cultures of the cells were radiolabeled and shown to synthesize and secrete osteonectin, the bone proteoglycan and the bone sialoprotein by immunoprecipitation and fluorography of SDS polyacrylamide gels. Analysis of the radiolabeled collagens synthesized by the cultures showed that they produced predominantly (approximately 94%) type I collagen, with small amounts of types III and V collagens. In agreement with previous investigators who have employed the rodent bone cell system, we confirmed in bovine bone cells that (a) there was a typical cyclic AMP response to parathyroid hormone, (b) freshly isolated cells possessed high levels of alkaline phosphatase, which diminished during culture but returned to normal levels in mineralizing cultures, and (c) cells grown in the presence of ascorbic acid and beta-glycerophosphate rapidly produced and mineralized an extracellular matrix containing largely type I collagen. These results show that antibodies directed against bone-specific, noncollagenous proteins can be used to clearly identify bone cells in vitro.
format Text
id pubmed-2113278
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21132782008-05-01 Fetal bovine bone cells synthesize bone-specific matrix proteins J Cell Biol Articles We isolated cells from both calvaria and the outer cortices of long bones from 3- to 5-mo bovine fetuses. The cells were identified as functional osteoblasts by indirect immunofluorescence using antibodies against three bone-specific, noncollagenous matrix proteins (osteonectin, the bone proteoglycan, and the bone sialoprotein) and against type 1 collagen. In separate experiments, confluent cultures of the cells were radiolabeled and shown to synthesize and secrete osteonectin, the bone proteoglycan and the bone sialoprotein by immunoprecipitation and fluorography of SDS polyacrylamide gels. Analysis of the radiolabeled collagens synthesized by the cultures showed that they produced predominantly (approximately 94%) type I collagen, with small amounts of types III and V collagens. In agreement with previous investigators who have employed the rodent bone cell system, we confirmed in bovine bone cells that (a) there was a typical cyclic AMP response to parathyroid hormone, (b) freshly isolated cells possessed high levels of alkaline phosphatase, which diminished during culture but returned to normal levels in mineralizing cultures, and (c) cells grown in the presence of ascorbic acid and beta-glycerophosphate rapidly produced and mineralized an extracellular matrix containing largely type I collagen. These results show that antibodies directed against bone-specific, noncollagenous proteins can be used to clearly identify bone cells in vitro. The Rockefeller University Press 1984-08-01 /pmc/articles/PMC2113278/ /pubmed/6086672 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Fetal bovine bone cells synthesize bone-specific matrix proteins
title Fetal bovine bone cells synthesize bone-specific matrix proteins
title_full Fetal bovine bone cells synthesize bone-specific matrix proteins
title_fullStr Fetal bovine bone cells synthesize bone-specific matrix proteins
title_full_unstemmed Fetal bovine bone cells synthesize bone-specific matrix proteins
title_short Fetal bovine bone cells synthesize bone-specific matrix proteins
title_sort fetal bovine bone cells synthesize bone-specific matrix proteins
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113278/
https://www.ncbi.nlm.nih.gov/pubmed/6086672