Cargando…
Association of newly synthesized islet prohormones with intracellular membranes
Results from recent studies have indicated that pancreatic islet prohormone converting enzymes are membrane-associated in islet microsomes and secretory granules. This observation, along with the demonstration that proglucagon is topologically segregated to the periphery within alpha cell secretory...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1984
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113282/ https://www.ncbi.nlm.nih.gov/pubmed/6146627 |
Sumario: | Results from recent studies have indicated that pancreatic islet prohormone converting enzymes are membrane-associated in islet microsomes and secretory granules. This observation, along with the demonstration that proglucagon is topologically segregated to the periphery within alpha cell secretory granules in several species, led us to investigate the possibility that newly synthesized islet prohormones might be associated with intracellular membranes. Anglerfish islets were incubated with [3H]tryptophan and [14C]isoleucine for 3 h, then fractionated by differential and density gradient centrifugation. Microsome (M) and secretory granule (SG) fractions were halved, sedimented, and resuspended in the presence or absence of dissociative reagents. After membrane lysis by repeated freezing and thawing, the membranous and soluble components were separated by centrifugation. Extracts of supernatants and pellets were chromatographed by gel filtration; fractions were collected and counted. A high proportion (77-79%) of the newly synthesized proinsulin and insulin was associated with both M and SG membranes. Most of the newly synthesized proglucagons and prosomatostatins (12,000-mol-wt precursors) were also membrane-associated (86-88%) in M and SG. In contrast, glucagon- and somatostatin-related peptides exhibited much less membrane-association in SG (24-31%). Bacitracin, bovine serum albumin EDTA, RNAse, alpha-methylmannoside, N-acetylglucosamine, and dithiodipyridine had no effect on prohormone association with membranes. However, high salt (1 M KCl) significantly reduced membrane- association of prohormones. Binding of labeled prohormones to SG membranes from unlabeled tissue increased with incubation time and was inhibited by unlabeled prohormones. The pH optimum for prohormone binding to both M and SG membranes was 5.2. It is suggested that association of newly synthesized prohormones with intracellular membranes could be related to the facilitation of proteolytic processing of prohormones and/or transport from their site of synthesis to the secretory granules. |
---|