Cargando…

Thermal stability of the helical structure of type IV collagen within basement membranes in situ: determination with a conformation-dependent monoclonal antibody

To examine the thermal stability of the helical structure of type IV collagen within basement membranes in situ, we have employed indirect immunofluorescence histochemistry performed at progressively higher temperatures using a conformation-dependent antibody, IV-IA8. We previously observed by compe...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113325/
https://www.ncbi.nlm.nih.gov/pubmed/6207181
Descripción
Sumario:To examine the thermal stability of the helical structure of type IV collagen within basement membranes in situ, we have employed indirect immunofluorescence histochemistry performed at progressively higher temperatures using a conformation-dependent antibody, IV-IA8. We previously observed by competition enzyme-linked immunosorbent assay that, in neutral solution, the helical epitope to which this antibody binds undergoes thermal denaturation over the range of 37-40 degrees C. In the present study, we have reacted unfixed cryostat tissue sections with this antibody at successively higher temperatures. We have operationally defined denaturation as the point at which type IV- specific fluorescence is no longer detectable. Under these conditions, the in situ denaturation temperature of this epitope in most basement membranes is 50-55 degrees C. In capillaries and some other small blood vessels the fluorescent signal is still clearly detectable at 60 degrees C, the highest temperature at which we can confidently use this technique. We conclude that the stability of the helical structure of type IV collagen within a basement membrane is considerably greater than it is in solution, and that conformation-dependent monoclonal antibodies can be useful probes for investigations of molecular structure in situ.