Cargando…

Spatial organization of axonal microtubules

Several workers have found that axonal microtubules have a uniform polarity orientation. It is the "+" end of the polymer that is distal to the cell body. The experiments reported here investigate whether this high degree of organization can be accounted for on the basis of structures or m...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113329/
https://www.ncbi.nlm.nih.gov/pubmed/6480693
_version_ 1782140160127795200
collection PubMed
description Several workers have found that axonal microtubules have a uniform polarity orientation. It is the "+" end of the polymer that is distal to the cell body. The experiments reported here investigate whether this high degree of organization can be accounted for on the basis of structures or mechanisms within the axon. Substantial depolymerization of axonal microtubules was observed in isolated, postganglionic sympathetic nerve fibers of the cat subjected to cold treatment; generally less than 10% of the original number of microtubules/micron 2 remained in cross section. The number of cold stable MTs that remained was not correlated with axonal area and they were also found within Schwann cells. Microtubules were allowed to repolymerize and the polarity orientation of the reassembled microtubules was determined. In fibers from four cats, a majority of reassembled microtubules returned with the original polarity orientation. However, in no case was the polarity orientation as uniform as the original organization. The degree to which the original orientation returned in a fiber was correlated with the number of cold-stable microtubules in the fiber. We suggest that stable microtubule fragments serve as nucleating elements for microtubule assembly and play a role in the spatial organization of neuronal microtubules. The extremely rapid reassembly of microtubules that we observed, returning to near control levels within the first 5 min, supports microtubule elongation from a nucleus. However, in three of four fibers examined this initial assembly was followed by an equally rapid, but transient decline in microtubule number to a value that was significantly different than the initial peak. This observation is difficult to interpret; however, a similar transient peak has been reported upon repolymerization of spindle microtubules after pressure induced depolymerization.
format Text
id pubmed-2113329
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21133292008-05-01 Spatial organization of axonal microtubules J Cell Biol Articles Several workers have found that axonal microtubules have a uniform polarity orientation. It is the "+" end of the polymer that is distal to the cell body. The experiments reported here investigate whether this high degree of organization can be accounted for on the basis of structures or mechanisms within the axon. Substantial depolymerization of axonal microtubules was observed in isolated, postganglionic sympathetic nerve fibers of the cat subjected to cold treatment; generally less than 10% of the original number of microtubules/micron 2 remained in cross section. The number of cold stable MTs that remained was not correlated with axonal area and they were also found within Schwann cells. Microtubules were allowed to repolymerize and the polarity orientation of the reassembled microtubules was determined. In fibers from four cats, a majority of reassembled microtubules returned with the original polarity orientation. However, in no case was the polarity orientation as uniform as the original organization. The degree to which the original orientation returned in a fiber was correlated with the number of cold-stable microtubules in the fiber. We suggest that stable microtubule fragments serve as nucleating elements for microtubule assembly and play a role in the spatial organization of neuronal microtubules. The extremely rapid reassembly of microtubules that we observed, returning to near control levels within the first 5 min, supports microtubule elongation from a nucleus. However, in three of four fibers examined this initial assembly was followed by an equally rapid, but transient decline in microtubule number to a value that was significantly different than the initial peak. This observation is difficult to interpret; however, a similar transient peak has been reported upon repolymerization of spindle microtubules after pressure induced depolymerization. The Rockefeller University Press 1984-10-01 /pmc/articles/PMC2113329/ /pubmed/6480693 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Spatial organization of axonal microtubules
title Spatial organization of axonal microtubules
title_full Spatial organization of axonal microtubules
title_fullStr Spatial organization of axonal microtubules
title_full_unstemmed Spatial organization of axonal microtubules
title_short Spatial organization of axonal microtubules
title_sort spatial organization of axonal microtubules
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113329/
https://www.ncbi.nlm.nih.gov/pubmed/6480693