Cargando…

Myosin rings and spreading in mouse blastomeres

The relationship between myosin organization and cell spreading in the preimplantation mouse embryo was studied by indirect immunofluorescence in embryos cultured on lectin-coated substrates. Binding of cell surface polysaccharides to substrate-bound concanavalin A and wheat germ agglutinin induced...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113384/
https://www.ncbi.nlm.nih.gov/pubmed/6381506
Descripción
Sumario:The relationship between myosin organization and cell spreading in the preimplantation mouse embryo was studied by indirect immunofluorescence in embryos cultured on lectin-coated substrates. Binding of cell surface polysaccharides to substrate-bound concanavalin A and wheat germ agglutinin induced changes in myosin distribution that resembled those which occur during cell-cell contact interaction. This involved an initial loss of myosin from the contact region that was associated with the development of stable cell-substrate attachments. In addition, a ring of myosin was formed along the edge of the cells' contact to the substrate. The presence of such a ring may be related to the potential for subsequent cell spreading. A myosin ring was also identified in the apical junctional region of the outer morula cells where it similarly separated the cell periphery into contacted and free peripheral domains. Following these changes in myosin organization the embryos spread on the substrate by extension of lamellipodia. These movements were coupled to the dissolution of the myosin ring and the reorganization of myosin into filament bundles. The sequence of changes in the pattern of myosin distribution suggests that contact regulation of myosin organization plays an important role in controlling the spreading behavior of blastomeres and perhaps more generally in the organization of cells into epithelia.