Cargando…

Transcytosis of the G protein of vesicular stomatitis virus after implantation into the apical membrane of Madin-Darby canine kidney cells. II. Involvement of the Golgi complex

In the preceding paper (Pesonen M., W. Ansorge, and K. Simons, 1984, J. Cell Biol., 99:796-802), we have shown that transcellular transport of the membrane glycoprotein G of vesicular stomatitis virus implanted into the apical membrane of Madin-Darby canine kidney cells is transcytosed through the e...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113415/
https://www.ncbi.nlm.nih.gov/pubmed/6088558
Descripción
Sumario:In the preceding paper (Pesonen M., W. Ansorge, and K. Simons, 1984, J. Cell Biol., 99:796-802), we have shown that transcellular transport of the membrane glycoprotein G of vesicular stomatitis virus implanted into the apical membrane of Madin-Darby canine kidney cells is transcytosed through the endosomal compartment to the basolateral plasma membrane. To determine whether the Golgi complex was involved in this process, G protein lacking sialic acid or all of the terminal sugars was implanted into the apical membrane and allowed to move to the basolateral membrane. Using the criteria of endoglycosidase H sensitivity, binding to Ricinus communis agglutinin and two-dimensional gel electrophoresis, the sugars on the transcytosed G protein were found to be the same as in the starting material. The absence of any involvement of the Golgi complex in transcytosis was supported by subcellular fractionation studies in which transcytosing G protein was never found in fractions containing galactosyl transferase.