Cargando…
Structure of C protein purified from cardiac muscle
C protein is a component of the thick filament of striated muscles. Although the function of C protein remains unknown, a variety of evidence suggests that C protein may regulate actin-myosin interaction or be involved in structural support or elasticity of the sarcomere. We have previously proposed...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113476/ https://www.ncbi.nlm.nih.gov/pubmed/3838095 |
Sumario: | C protein is a component of the thick filament of striated muscles. Although the function of C protein remains unknown, a variety of evidence suggests that C protein may regulate actin-myosin interaction or be involved in structural support or elasticity of the sarcomere. We have previously proposed (Hartzell, H. C., 1984, J. Gen. Physiol., 83:563-588) that C protein is involved in regulating twitch relaxation in cardiac muscle. To gain further insight into the function of C protein, we have studied the structure of C protein purified from chicken heart. C protein was purified from extracts of detergent-washed myofibrils by sequential hydroxylapatite and DEAE-Sephacel chromatography. C protein was judged greater than 95% pure by SDS PAGE. The polypeptide subunit had a molecular weight of 155,000 and the native molecule sedimented on linear sucrose or glycerol gradients at 4- 5S. For electron microscopy, purified C protein was dialyzed and diluted into a volatile buffer in 50% glycerol, aspirated onto mica, dried under vacuum, and rotary platinum-shadowed. Replicas revealed particles of relatively homogeneous overall dimensions. Over half of the particles were V-shaped. The "arm" lengths of the V-shaped particles were 22 +/- 4.5 nm (SD). Gel filtration on Sephacryl S-300 demonstrated that purified C protein had a Stokes' radius of 5.07 nm. Measurements of viscosity gave an intrinsic viscosity of 16.5 cm3/g. These data are consistent with the electron microscopic data and suggest that C protein in heart muscle is asymmetric. The C protein molecule is large enough to extend from the surface of a thick filament to adjacent thin or thick filaments. |
---|