Cargando…

Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate

Chondrocytes produce large pericellular coats in vitro that can be visualized by the exclusion of particles, e.g., fixed erythrocytes, and that are removed by treatment with Streptomyces hyaluronidase, which is specific for hyaluronate. In this study, we examined the kinetics of formation of these c...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113554/
https://www.ncbi.nlm.nih.gov/pubmed/6501414
_version_ 1782140212480049152
collection PubMed
description Chondrocytes produce large pericellular coats in vitro that can be visualized by the exclusion of particles, e.g., fixed erythrocytes, and that are removed by treatment with Streptomyces hyaluronidase, which is specific for hyaluronate. In this study, we examined the kinetics of formation of these coats and the relationship of hyaluronate and proteoglycan to coat structure. Chondrocytes were isolated from chick tibia cartilage by collagenase-trypsin digestion and were characterized by their morphology and by their synthesis of both type II collagen and high molecular weight proteoglycans. The degree of spreading of the chondrocytes and the size of the coats were quantitated at various times subsequent to seeding by tracing phase-contrast photomicrographs of the cultures. After seeding, the chondrocytes attached themselves to the tissue culture dish and exhibited coats within 4 h. The coats reached a maximum size after 3-4 d and subsequently decreased over the next 2-3 d. Subcultured chondrocytes produced a large coat only if passaged before 4 d. Both primary and first passage cells, with or without coats, produced type II collagen but not type I collagen as determined by enzyme-linked immunosorbent assay. Treatment with Streptomyces hyaluronidase (1.0 mU/ml, 15 min), which completely removed the coat, released 58% of the chondroitin sulfate but only 9% of the proteins associated with the cell surface. The proteins released by hyaluronidase were not digestible by bacterial collagenase. Monensin and cycloheximide (0.01-10 microM, 48 h) caused a dose-dependent decrease in coat size that was linearly correlated to synthesis of cell surface hyaluronate (r = 0.98) but not chondroitin sulfate (r = 0.2). We conclude that the coat surrounding chondrocytes is dependent on hyaluronate for its structure and that hyaluronate retains a large proportion of the proteoglycan in the coat.
format Text
id pubmed-2113554
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21135542008-05-01 Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate J Cell Biol Articles Chondrocytes produce large pericellular coats in vitro that can be visualized by the exclusion of particles, e.g., fixed erythrocytes, and that are removed by treatment with Streptomyces hyaluronidase, which is specific for hyaluronate. In this study, we examined the kinetics of formation of these coats and the relationship of hyaluronate and proteoglycan to coat structure. Chondrocytes were isolated from chick tibia cartilage by collagenase-trypsin digestion and were characterized by their morphology and by their synthesis of both type II collagen and high molecular weight proteoglycans. The degree of spreading of the chondrocytes and the size of the coats were quantitated at various times subsequent to seeding by tracing phase-contrast photomicrographs of the cultures. After seeding, the chondrocytes attached themselves to the tissue culture dish and exhibited coats within 4 h. The coats reached a maximum size after 3-4 d and subsequently decreased over the next 2-3 d. Subcultured chondrocytes produced a large coat only if passaged before 4 d. Both primary and first passage cells, with or without coats, produced type II collagen but not type I collagen as determined by enzyme-linked immunosorbent assay. Treatment with Streptomyces hyaluronidase (1.0 mU/ml, 15 min), which completely removed the coat, released 58% of the chondroitin sulfate but only 9% of the proteins associated with the cell surface. The proteins released by hyaluronidase were not digestible by bacterial collagenase. Monensin and cycloheximide (0.01-10 microM, 48 h) caused a dose-dependent decrease in coat size that was linearly correlated to synthesis of cell surface hyaluronate (r = 0.98) but not chondroitin sulfate (r = 0.2). We conclude that the coat surrounding chondrocytes is dependent on hyaluronate for its structure and that hyaluronate retains a large proportion of the proteoglycan in the coat. The Rockefeller University Press 1984-12-01 /pmc/articles/PMC2113554/ /pubmed/6501414 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate
title Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate
title_full Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate
title_fullStr Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate
title_full_unstemmed Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate
title_short Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate
title_sort pericellular coat of chick embryo chondrocytes: structural role of hyaluronate
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113554/
https://www.ncbi.nlm.nih.gov/pubmed/6501414