Cargando…

Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes

Posttranslational modifications and intracellular transport of the D2- cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A) and...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113562/
https://www.ncbi.nlm.nih.gov/pubmed/6501413
_version_ 1782140214357000192
collection PubMed
description Posttranslational modifications and intracellular transport of the D2- cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A) and 131,000-158,000 (B) were synthesized using radiolabeled precursors in cultured neurons. A and B were found to contain only N-linked complex oligosaccharides, and both polypeptides appeared to be polysialated as determined by [14C]mannosamine incorporation and precipitation with anti-polysialic acid antibody. The two polypeptides were sulfated in the trans-Golgi compartment and phosphorylated at the plasma membrane. D2-CAM underwent rapid intracellular transport, appearing at the cell surface within 35 min of synthesis. A and B were shown to be integral membrane proteins as seen by radioiodination by photoactivation employing a hydrophobic labeling reagent. In rat forebrain explant cultures, D2-CAM was synthesized as four polypeptides: A (195,000 Mr), B (137,000 Mr), C (115,000 Mr), and a group of polypeptides in the high molecular weight region (HMr) between 250,000 and 350,000. Peptide maps of the four polypeptides yielded similar patterns. Biosynthesis of C and HMr increased with age, relative to A and B. A and B were sulfated in embryonic brain, however, sulfation was not noticeable at postnatal ages. Phosphorylation, on the other hand, of A and B was observed at all ages examined. We suggest that D2-CAM function may be modified during development by changes in the relative synthesis of the different polypeptides, as well as by changes in their glycosylation and sulfation.
format Text
id pubmed-2113562
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21135622008-05-01 Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes J Cell Biol Articles Posttranslational modifications and intracellular transport of the D2- cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A) and 131,000-158,000 (B) were synthesized using radiolabeled precursors in cultured neurons. A and B were found to contain only N-linked complex oligosaccharides, and both polypeptides appeared to be polysialated as determined by [14C]mannosamine incorporation and precipitation with anti-polysialic acid antibody. The two polypeptides were sulfated in the trans-Golgi compartment and phosphorylated at the plasma membrane. D2-CAM underwent rapid intracellular transport, appearing at the cell surface within 35 min of synthesis. A and B were shown to be integral membrane proteins as seen by radioiodination by photoactivation employing a hydrophobic labeling reagent. In rat forebrain explant cultures, D2-CAM was synthesized as four polypeptides: A (195,000 Mr), B (137,000 Mr), C (115,000 Mr), and a group of polypeptides in the high molecular weight region (HMr) between 250,000 and 350,000. Peptide maps of the four polypeptides yielded similar patterns. Biosynthesis of C and HMr increased with age, relative to A and B. A and B were sulfated in embryonic brain, however, sulfation was not noticeable at postnatal ages. Phosphorylation, on the other hand, of A and B was observed at all ages examined. We suggest that D2-CAM function may be modified during development by changes in the relative synthesis of the different polypeptides, as well as by changes in their glycosylation and sulfation. The Rockefeller University Press 1984-12-01 /pmc/articles/PMC2113562/ /pubmed/6501413 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes
title Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes
title_full Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes
title_fullStr Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes
title_full_unstemmed Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes
title_short Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes
title_sort biosynthesis of the d2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113562/
https://www.ncbi.nlm.nih.gov/pubmed/6501413